总结归纳
- 头结点可以没有,头指针必须有。访问整个链表,是用过遍历头指针来进行的。
- 这里没有特别的设置一个头指针,因为当指针指向整个链表 L 时,该指针的实现效果就是头指针。
- 关于函数中引用的问题,实际上对于带头结点的绝大部分操作,是不需要引用的,因为对于链表的任何操作,传入的实际上都是头指针(头结点),通过头指针的遍历访问后继结点。所以,无论是插入删除还是修改,都不涉及头指针的改变。但如果是不带头指针的单链表操作,就需要添加引用,因为当插入或删除第一个位置的元素时,会涉及头指针的修改,此时的头指针就是链表的第一个元素。
- 不带头结点的单链表,即单链表的第一个结点就存储数据,头指针也指向第一个结点;带头结点的单链表,第一个结点是头结点,不存储数据,从头结点的 next 开始存储,头指针可以从头结点的 next 开始遍历。
- 对于结点的前插操作,找到对应位置的结点,设新结点为该节点的后继结点,将该结点的 data 后移至新结点的 data,以此来模拟结点的后移,并且时间复杂度为 O(1),我愿称之为“偷天换日”。
- 如果采用尾插法创建单链表,可以设置一个尾指针,指向单链表末尾,这样就不用每次都通过遍历找到最后一个结点,但每插入一个都要更新尾指针。这样的时间复杂度为O(1)。
- 在 DeleteNode 函数中(删除指定结点),存在一处 bug ,当删除结点为最后一个结点时,由于该结点没有后继结点,该函数会报错,初步认为只能通过 DeleteNextLNode函数(删除p结点的后继结点)来实现删除最后一个结点的操作。
- 大多数情况下,单链表的查询、插入、删除的平均时间复杂度都是O(n),因为要遍历头结点开始查找。但如果对指定结点进行插入和删除,则时间复杂度为O(1),因为不需要再通过遍历找到指定的结点。要具体分析。
- 如果不带头结点的单链表,则对表头的操作(插入和删除)要特殊处理,例如 List_HeadInsert(头插法创建单链表)、ListInsert(按位序插入)。每次插入后都要更新头指针,而对于带头结点的单链表,它的头指针指向永远是头结点,只需要修改头结点的后继就可以完成插入。
代码实现
#include <iostream>
#include <stdio.h>
#include <string>
using namespace std;
struct LNode {
int data;
LNode *next;
};
typedef LNode LNode;
typedef LNode *LinkList;
void InitList(LinkList &L) {
L = new LNode;
L->next = NULL;
}
bool Empty(LinkList &L) {
if (L->next == NULL) {
return true;
} else {
return false;
}
}
int GetLength(LinkList &L) {
LNode *p = L->next;
int length = 0;
while (p != NULL) {
p = p->next;
length++;
}
return length;
}
LNode *GetElem(LinkList &L, int i) {
if (i < 0) {
return NULL;
}
LNode *p = L;
int j = 0;
while (p != NULL && j < i) {
p = p->next;
j++;
}
return p;
}
LNode *GetLNode(LinkList &L, int e) {
LNode *p = L->next;
while (p != NULL && p->data != e) {
p = p->next;
}
return p;
}
LinkList List_HeadInsert(LinkList &L) {
int e;
cin >> e;
while (e != 9999) {
LNode *s = new LNode;
s->data = e;
s->next = L->next;
L->next = s;
cin >> e;
}
return L;
}
LinkList List_TailInsert(LinkList &L) {
LNode *r = L;
int e;
cin >> e;
while (e != 9999) {
LNode *s = new LNode;
s->next = r->next;
s->data = e;
r->next = s;
r = s;
cin >> e;
}
r->next = NULL;
return L;
}
bool InsertPriorNode(LNode *p, int e) {
if (p == NULL) {
return false;
}
LNode *s = new LNode;
s->next = p->next;
s->data = p->data;
p->next = s;
p->data = e;
return true;
}
bool InsertNextNode(LNode *p, int e) {
if (p == NULL) {
return false;
}
LNode *q = new LNode;
q->data = e;
q->next = p->next;
p->next = q;
return true;
}
bool InserstList(LinkList &L, int i, int e) {
if (i < 1) {
return false;
}
LNode *p = GetElem(L, i - 1);
InsertNextNode(p, 5244);
return true;
}
bool DeleteNextDNode(LNode *p) {
if (p == NULL || p->next == NULL) {
return false;
}
LNode *s = new LNode;
s = p->next;
p->next = s->next;
delete s;
return true;
}
bool DeleteNode(LNode *p) {
if (p == NULL) {
return false;
}
LNode *s = new LNode;
s = p->next;
p->data = s->data;
p->next = s->next;
delete s;
return true;
}
bool ListDelte(LinkList &L, int i, int &e) {
if (i < 1) {
return false;
}
LNode *p = GetElem(L, i - 1);
e = p->next->data;
DeleteNextDNode(p);
return true;
}
void TraverseList(LinkList &L) {
if (L->next == NULL) {
return;
}
LNode *p = L->next;
while (p != NULL) {
cout << p->data << " ";
p = p->next;
}
cout << endl;
}
int main() {
LinkList L;
InitList(L);
L = List_TailInsert(L);
TraverseList(L);
InserstList(L, 1, 5244);
TraverseList(L);
int e = -1;
ListDelte(L, 3, e);
cout << "被删除的值:" << e << endl;
TraverseList(L);
cout << "长度:" << GetLength(L) << endl;
return 0;
}