LibreOJ 6010.「网络流 24 题」数字梯形

链接

https://loj.ac/p/6010

题意

给定一个由 n n n 行数字组成的数字梯形如下方所示。梯形的第一行有 m m m 个数字。从梯形的顶部的 m m m 个数字开始,在每个数字处可以沿左下或右下方向移动,形成一条从梯形的顶至底的路径。

在这里插入图片描述

分别遵守以下规则:

  1. 从梯形的顶至底的 m m m 条路径互不相交;
  2. 从梯形的顶至底的 m m m 条路径仅在数字结点处相交;
  3. 从梯形的顶至底的 m m m 条路径允许在数字结点相交或边相交。

按照规则 1 1 1,规则 2 2 2,和规则 3 3 3 计算出的最大数字总和并输出,每行一个最大总和。

思路

  1. 点和边都只能经过一次
  2. 点能经过无限次,边只能经过一次
  3. 点和边都能经过无限次

按上述解释对三个问题分别建图跑费用流。

代码

#include <bits/stdc++.h>
#define SZ(x) (int)(x).size()
#define ALL(x) (x).begin(),(x).end()
#define PB push_back
#define EB emplace_back
#define MP make_pair
#define FI first
#define SE second
using namespace std;
typedef double DB;
typedef long double LD;
typedef long long LL;
typedef unsigned long long ULL;
typedef pair<int,int> PII;
typedef vector<int> VI;
typedef vector<PII> VPII;
// head
const int N=25;
const int INF=0x3f3f3f3f;
int n,m,cnt,id[N][N],a[N][N],dist[N*N*2],h[N*N*2],preu[N*N*2],pree[N*N*6];
VI g[N*N*2];
struct E {
    int v;
    int c,w;
    E(){}
    E(int v,int c,int w):v(v),c(c),w(w){}
};
vector<E> e;
void init(int n) {
    for(int i=0;i<SZ(e);i++) pree[i]=0;
    e.clear();
    for(int i=1;i<=n;i++) g[i].clear();
    for(int i=1;i<=n;i++) h[i]=preu[i]=0;
}
void add_edge(int u,int v,int c,int w) {
    e.EB(v,c,w);
    e.EB(u,0,-w);
    g[u].PB(SZ(e)-2);
    g[v].PB(SZ(e)-1);
}
bool dijkstra(int n,int s,int t) {
    for(int i=1;i<=n;i++) dist[i]=INF;
    priority_queue<PII,VPII,greater<PII>> q;
    dist[s]=0;
    q.emplace(0,s);
    while(SZ(q)) {
        int d=q.top().FI,u=q.top().SE;
        q.pop();
        if(dist[u]!=d) continue;
        for(auto x:g[u]) {
            int v=e[x].v,c=e[x].c,w=e[x].w;
            if(c>0&&dist[v]>dist[u]-h[v]+w+h[u]) {
                dist[v]=dist[u]-h[v]+w+h[u];
                preu[v]=u;
                pree[v]=x;
                q.emplace(dist[v],v);
            }
        }
    }
    return dist[t]!=INF;
}
PII mcmf(int n,int s,int t) {
    int flow=0,cost=0;
    while(dijkstra(n,s,t)) {
        int c=INF;
        for(int i=1;i<=n;i++) h[i]=min(INF,h[i]+dist[i]);
        for(int u=t;u!=s;u=preu[u]) c=min(c,e[pree[u]].c);
        flow+=c;
        cost+=c*h[t];
        for(int u=t;u!=s;u=preu[u]) {
            e[pree[u]].c-=c;
            e[pree[u]^1].c+=c;
        }
    }
    init(t);
    return MP(flow,cost);
}
int solve1() {
    int s=cnt*2+1,t=s+1;
    for(int i=1;i<=m;i++) add_edge(s,id[1][i],1,0);
    for(int i=1;i<n;i++)
        for(int j=1;j<=m+i-1;j++) {
            add_edge(id[i][j],id[i][j]+cnt,1,a[i][j]);
            add_edge(id[i][j]+cnt,id[i+1][j],1,0);
            add_edge(id[i][j]+cnt,id[i+1][j+1],1,0);
        }
    for(int i=1;i<=m+n-1;i++) {
        add_edge(id[n][i],id[n][i]+cnt,1,a[n][i]);
        add_edge(id[n][i]+cnt,t,1,0);
    }
    return -mcmf(t,s,t).SE;
}
int solve2() {
    int s=cnt+1,t=s+1;
    for(int i=1;i<=m;i++) add_edge(s,id[1][i],1,a[1][i]);
    for(int i=1;i<n;i++)
        for(int j=1;j<=m+i-1;j++) {
            add_edge(id[i][j],id[i+1][j],1,a[i+1][j]);
            add_edge(id[i][j],id[i+1][j+1],1,a[i+1][j+1]);
        }
    for(int i=1;i<=m+n-1;i++) add_edge(id[n][i],t,INF,0);
    return -mcmf(t,s,t).SE;
}
int solve3() {
    int s=cnt+1,t=s+1;
    for(int i=1;i<=m;i++) add_edge(s,id[1][i],1,a[1][i]);
    for(int i=1;i<n;i++)
        for(int j=1;j<=m+i-1;j++) {
            add_edge(id[i][j],id[i+1][j],INF,a[i+1][j]);
            add_edge(id[i][j],id[i+1][j+1],INF,a[i+1][j+1]);
        }
    for(int i=1;i<=m+n-1;i++) add_edge(id[n][i],t,INF,0);
    return -mcmf(t,s,t).SE;
}
int main() {
    ios::sync_with_stdio(false);
    cin.tie(nullptr);
    cin>>m>>n;
    for(int i=1;i<=n;i++) {
        for(int j=1;j<=m+i-1;j++) {
            cin>>a[i][j];
            a[i][j]=-a[i][j];
            id[i][j]=++cnt;
        }
    }
    cout<<solve1()<<'\n';
    cout<<solve2()<<'\n';
    cout<<solve3()<<'\n';
    return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值