链接
题意
给定一个由 n n n 行数字组成的数字梯形如下方所示。梯形的第一行有 m m m 个数字。从梯形的顶部的 m m m 个数字开始,在每个数字处可以沿左下或右下方向移动,形成一条从梯形的顶至底的路径。
分别遵守以下规则:
- 从梯形的顶至底的 m m m 条路径互不相交;
- 从梯形的顶至底的 m m m 条路径仅在数字结点处相交;
- 从梯形的顶至底的 m m m 条路径允许在数字结点相交或边相交。
按照规则 1 1 1,规则 2 2 2,和规则 3 3 3 计算出的最大数字总和并输出,每行一个最大总和。
思路
- 点和边都只能经过一次
- 点能经过无限次,边只能经过一次
- 点和边都能经过无限次
按上述解释对三个问题分别建图跑费用流。
代码
#include <bits/stdc++.h>
#define SZ(x) (int)(x).size()
#define ALL(x) (x).begin(),(x).end()
#define PB push_back
#define EB emplace_back
#define MP make_pair
#define FI first
#define SE second
using namespace std;
typedef double DB;
typedef long double LD;
typedef long long LL;
typedef unsigned long long ULL;
typedef pair<int,int> PII;
typedef vector<int> VI;
typedef vector<PII> VPII;
// head
const int N=25;
const int INF=0x3f3f3f3f;
int n,m,cnt,id[N][N],a[N][N],dist[N*N*2],h[N*N*2],preu[N*N*2],pree[N*N*6];
VI g[N*N*2];
struct E {
int v;
int c,w;
E(){}
E(int v,int c,int w):v(v),c(c),w(w){}
};
vector<E> e;
void init(int n) {
for(int i=0;i<SZ(e);i++) pree[i]=0;
e.clear();
for(int i=1;i<=n;i++) g[i].clear();
for(int i=1;i<=n;i++) h[i]=preu[i]=0;
}
void add_edge(int u,int v,int c,int w) {
e.EB(v,c,w);
e.EB(u,0,-w);
g[u].PB(SZ(e)-2);
g[v].PB(SZ(e)-1);
}
bool dijkstra(int n,int s,int t) {
for(int i=1;i<=n;i++) dist[i]=INF;
priority_queue<PII,VPII,greater<PII>> q;
dist[s]=0;
q.emplace(0,s);
while(SZ(q)) {
int d=q.top().FI,u=q.top().SE;
q.pop();
if(dist[u]!=d) continue;
for(auto x:g[u]) {
int v=e[x].v,c=e[x].c,w=e[x].w;
if(c>0&&dist[v]>dist[u]-h[v]+w+h[u]) {
dist[v]=dist[u]-h[v]+w+h[u];
preu[v]=u;
pree[v]=x;
q.emplace(dist[v],v);
}
}
}
return dist[t]!=INF;
}
PII mcmf(int n,int s,int t) {
int flow=0,cost=0;
while(dijkstra(n,s,t)) {
int c=INF;
for(int i=1;i<=n;i++) h[i]=min(INF,h[i]+dist[i]);
for(int u=t;u!=s;u=preu[u]) c=min(c,e[pree[u]].c);
flow+=c;
cost+=c*h[t];
for(int u=t;u!=s;u=preu[u]) {
e[pree[u]].c-=c;
e[pree[u]^1].c+=c;
}
}
init(t);
return MP(flow,cost);
}
int solve1() {
int s=cnt*2+1,t=s+1;
for(int i=1;i<=m;i++) add_edge(s,id[1][i],1,0);
for(int i=1;i<n;i++)
for(int j=1;j<=m+i-1;j++) {
add_edge(id[i][j],id[i][j]+cnt,1,a[i][j]);
add_edge(id[i][j]+cnt,id[i+1][j],1,0);
add_edge(id[i][j]+cnt,id[i+1][j+1],1,0);
}
for(int i=1;i<=m+n-1;i++) {
add_edge(id[n][i],id[n][i]+cnt,1,a[n][i]);
add_edge(id[n][i]+cnt,t,1,0);
}
return -mcmf(t,s,t).SE;
}
int solve2() {
int s=cnt+1,t=s+1;
for(int i=1;i<=m;i++) add_edge(s,id[1][i],1,a[1][i]);
for(int i=1;i<n;i++)
for(int j=1;j<=m+i-1;j++) {
add_edge(id[i][j],id[i+1][j],1,a[i+1][j]);
add_edge(id[i][j],id[i+1][j+1],1,a[i+1][j+1]);
}
for(int i=1;i<=m+n-1;i++) add_edge(id[n][i],t,INF,0);
return -mcmf(t,s,t).SE;
}
int solve3() {
int s=cnt+1,t=s+1;
for(int i=1;i<=m;i++) add_edge(s,id[1][i],1,a[1][i]);
for(int i=1;i<n;i++)
for(int j=1;j<=m+i-1;j++) {
add_edge(id[i][j],id[i+1][j],INF,a[i+1][j]);
add_edge(id[i][j],id[i+1][j+1],INF,a[i+1][j+1]);
}
for(int i=1;i<=m+n-1;i++) add_edge(id[n][i],t,INF,0);
return -mcmf(t,s,t).SE;
}
int main() {
ios::sync_with_stdio(false);
cin.tie(nullptr);
cin>>m>>n;
for(int i=1;i<=n;i++) {
for(int j=1;j<=m+i-1;j++) {
cin>>a[i][j];
a[i][j]=-a[i][j];
id[i][j]=++cnt;
}
}
cout<<solve1()<<'\n';
cout<<solve2()<<'\n';
cout<<solve3()<<'\n';
return 0;
}