支持向量机SVM 原理实现

记录一下学习的支持向量机实战过程,方便以后复习和查看。

支持向量机(SVM)

先导库

%matplotlib inline
import numpy as np
import matplotlib.pyplot as plt
from scipy import stats

# use seaborn plotting defaults
import seaborn as sns; sns.set()

支持向量基本原理

解决线性不可分问题,低维不可分问题转化为高维可分问题

例子

#用samples_generator模块随机生成样本数据
from sklearn.datasets.samples_generator import make_blobs
X, y = make_blobs(n_samples=50, centers=2,
                  random_state=0, cluster_std=0.60) #50个样本点,2个簇,每次随机的都一样的,簇的离散程度(越小越集中)
plt.scatter(X[:, 0], X[:, 1], c=y, s=50, cmap='autumn')

在这里插入图片描述
随便的画几条分割线,哪个好来这?

xfit = np.linspace(-1, 3.5)
plt.scatter(X[:, 0], X[:, 1], c=y, s=50, cmap='autumn')
plt.plot([0.6], [2.1], 'x', color='red', markeredgewidth=2, markersize=10)

for m, b in [(1, 0.65), (0.5, 1.6), (-0.2, 2.9)]:
    plt.plot(xfit, m * xfit + b, '-k')

plt.xlim(-1, 3.5);

在这里插入图片描述

Support Vector Machines: 最小化 雷区

xfit = np.linspace(-1, 3.5)
plt.scatter(X[:, 0], X[:, 1], c=y, s=50, cmap='autumn')

for m, b, d in [(1, 0.65, 0.33), (0.5, 1.6, 0.55), (-0.2, 2.9, 0.2)]:
    yfit = m * xfit + b
    plt.plot(xfit, yfit, '-k')
    plt.fill_between(xfit, yfit - d, yfit + d, edgecolor='none',
                     color='#AAAAAA', alpha=0.4)

plt.xlim(-1, 3.5);

在这里插入图片描述

训练一个基本的SVM

from sklearn.svm import SVC # "Support vector classifier导入支持向量机分类器"
model = SVC(kernel='linear') #线性支持向量机、核变换支持向量机
model.fit(X, y)

SVC(kernel=‘linear’)

#绘图函数
def plot_svc_decision_function(model, ax=None, plot_support=True):
    """Plot the decision function for a 2D SVC"""
    if ax is None:
        ax = plt.gca()
    xlim = ax.get_xlim()
    ylim = ax.get_ylim()
    
    # create grid to evaluate model
    x = np.linspace(xlim[0], xlim[1], 30)
    y = np.linspace(ylim[0], ylim[1], 30)
    Y, X = np.meshgrid(y, x)
    xy = np.vstack([X.ravel(), Y.ravel()]).T
    P = model.decision_function(xy).reshape(X.shape)
    
    # plot decision boundary and margins
    ax.contour(X, Y, P, colors='k',
               levels=[-1, 0, 1], alpha=0.5,
               linestyles=['--', '-', '--'])
    
    # plot support vectors
    if plot_support:
        ax.scatter(model.support_vectors_[:, 0],
                   model.support_vectors_[:, 1],
                   s=300, linewidth=1, facecolors='none');
    ax.set_xlim(xlim)
    ax.set_ylim(ylim)
plt.scatter(X[:, 0], X[:, 1], c=y, s=50, cmap='autumn')
plot_svc_decision_function(model);

在这里插入图片描述

  • 这条线就是我们希望得到的决策边界啦

  • 观察发现有3个点做了特殊的标记,它们恰好都是边界上的点

  • 它们就是我们的support vectors(支持向量)

  • 在Scikit-Learn中, 它们存储在这个位置 support_vectors_(一个属性)

model.support_vectors_  #拿到决策边界上点(支持向量)的坐标

array([[0.44359863, 3.11530945],
[2.33812285, 3.43116792],
[2.06156753, 1.96918596]])

  • 观察可以发现,只需要支持向量我们就可以把模型构建出来

  • 接下来我们尝试一下,用不同多的数据点,看看效果会不会发生变化

  • 分别使用60个和120个数据点

def plot_svm(N=10, ax=None):
    X, y = make_blobs(n_samples=200, centers=2,
                      random_state=0, cluster_std=0.60)
    X = X[:N]
    y = y[:N]
    model = SVC(kernel='linear', C=1E10)
    model.fit(X, y)
    
    ax = ax or plt.gca()
    ax.scatter(X[:, 0], X[:, 1], c=y, s=50, cmap='autumn')
    ax.set_xlim(-1, 4)
    ax.set_ylim(-1, 6)
    plot_svc_decision_function(model, ax)

fig, ax = plt.subplots(1, 2, figsize=(16, 6))
fig.subplots_adjust(left=0.0625, right=0.95, wspace=0.1)
for axi, N in zip(ax, [60, 120]): #60个样本点和120个样本点
    plot_svm(N, axi)
    axi.set_title('N = {0}'.format(N))

在这里插入图片描述

  • 左边是60个点的结果,右边的是120个点的结果
  • 观察发现,只要支持向量没变,其他的数据怎么加无所谓!

引入核函数的SVM

  • 首先我们先用线性的核来看一下在下面这样比较难的数据集上还能分了吗?
from sklearn.datasets.samples_generator import make_circles
X, y = make_circles(100, factor=.1, noise=.1)

clf = SVC(kernel='linear').fit(X, y)

plt.scatter(X[:, 0], X[:, 1], c=y, s=50, cmap='autumn')
plot_svc_decision_function(clf, plot_support=False);

在这里插入图片描述

  • 分类效果不好,坏菜喽,分不了了,那咋办呢?试试高维核变换吧!
  • We can visualize this extra data dimension using a three-dimensional plot:
#加入了新的维度r,此处是2D->3D
from mpl_toolkits import mplot3d
r = np.exp(-(X ** 2).sum(1))
def plot_3D(elev=30, azim=30, X=X, y=y):
    ax = plt.subplot(projection='3d')
    ax.scatter3D(X[:, 0], X[:, 1], r, c=y, s=50, cmap='autumn')
    ax.view_init(elev=elev, azim=azim)
    ax.set_xlabel('x')
    ax.set_ylabel('y')
    ax.set_zlabel('r')

plot_3D(elev=45, azim=45, X=X, y=y)

在这里插入图片描述

#加入径向基函数(高斯核函数)(高斯变换)
clf = SVC(kernel='rbf', C=1E6)
clf.fit(X, y)

SVC(C=1000000.0)

#这回牛逼了!
plt.scatter(X[:, 0], X[:, 1], c=y, s=50, cmap='autumn')
plot_svc_decision_function(clf)
plt.scatter(clf.support_vectors_[:, 0], clf.support_vectors_[:, 1],
            s=300, lw=1, facecolors='none');

在这里插入图片描述

使用这种核支持向量机,我们学习一个合适的非线性决策边界。这种核变换策略在机器学习中经常被使用!

调节SVM参数: Soft Margin问题

调节C参数

  • 当C趋近于无穷大时:意味着分类严格不能有错误
  • 当C趋近于很小的时:意味着可以有更大的错误容忍

引入松弛因子

X, y = make_blobs(n_samples=100, centers=2,
                  random_state=0, cluster_std=0.8) #0.8:离散程度变大了
plt.scatter(X[:, 0], X[:, 1], c=y, s=50, cmap='autumn');

在这里插入图片描述

X, y = make_blobs(n_samples=100, centers=2,
                  random_state=0, cluster_std=0.8)

fig, ax = plt.subplots(1, 2, figsize=(16, 6))
fig.subplots_adjust(left=0.0625, right=0.95, wspace=0.1)

for axi, C in zip(ax, [10.0, 0.1]):
    model = SVC(kernel='linear', C=C).fit(X, y)
    axi.scatter(X[:, 0], X[:, 1], c=y, s=50, cmap='autumn')
    plot_svc_decision_function(model, axi)
    axi.scatter(model.support_vectors_[:, 0],
                model.support_vectors_[:, 1],
                s=300, lw=1, facecolors='none');
    axi.set_title('C = {0:.1f}'.format(C), size=14)

在这里插入图片描述

引入松弛参数后,决策边界变大,需要用交叉验证看哪个好

X, y = make_blobs(n_samples=100, centers=2,
                  random_state=0, cluster_std=1.1)

fig, ax = plt.subplots(1, 2, figsize=(16, 6))
fig.subplots_adjust(left=0.0625, right=0.95, wspace=0.1)

for axi, gamma in zip(ax, [10.0, 0.1]):
    model = SVC(kernel='rbf', gamma=gamma).fit(X, y) #gamma控制模型的复杂程度,越高代表维度越高
    axi.scatter(X[:, 0], X[:, 1], c=y, s=50, cmap='autumn')
    plot_svc_decision_function(model, axi)
    axi.scatter(model.support_vectors_[:, 0],
                model.support_vectors_[:, 1],
                s=300, lw=1, facecolors='none');
    axi.set_title('gamma = {0:.1f}'.format(gamma), size=14)

在这里插入图片描述

大gamma值==>复杂模型更能分的清楚,但是越复杂的边界泛化能力越低,选右边的!

©️2020 CSDN 皮肤主题: 游动-白 设计师:上身试试 返回首页