# 支持向量机（SVM）

%matplotlib inline
import numpy as np
import matplotlib.pyplot as plt
from scipy import stats

# use seaborn plotting defaults
import seaborn as sns; sns.set()


## 例子

#用samples_generator模块随机生成样本数据
from sklearn.datasets.samples_generator import make_blobs
X, y = make_blobs(n_samples=50, centers=2,
random_state=0, cluster_std=0.60) #50个样本点，2个簇，每次随机的都一样的，簇的离散程度（越小越集中）
plt.scatter(X[:, 0], X[:, 1], c=y, s=50, cmap='autumn')


xfit = np.linspace(-1, 3.5)
plt.scatter(X[:, 0], X[:, 1], c=y, s=50, cmap='autumn')
plt.plot([0.6], [2.1], 'x', color='red', markeredgewidth=2, markersize=10)

for m, b in [(1, 0.65), (0.5, 1.6), (-0.2, 2.9)]:
plt.plot(xfit, m * xfit + b, '-k')

plt.xlim(-1, 3.5);


## Support Vector Machines: 最小化 雷区

xfit = np.linspace(-1, 3.5)
plt.scatter(X[:, 0], X[:, 1], c=y, s=50, cmap='autumn')

for m, b, d in [(1, 0.65, 0.33), (0.5, 1.6, 0.55), (-0.2, 2.9, 0.2)]:
yfit = m * xfit + b
plt.plot(xfit, yfit, '-k')
plt.fill_between(xfit, yfit - d, yfit + d, edgecolor='none',
color='#AAAAAA', alpha=0.4)

plt.xlim(-1, 3.5);


### 训练一个基本的SVM

from sklearn.svm import SVC # "Support vector classifier导入支持向量机分类器"
model = SVC(kernel='linear') #线性支持向量机、核变换支持向量机
model.fit(X, y)


SVC(kernel=‘linear’)

#绘图函数
def plot_svc_decision_function(model, ax=None, plot_support=True):
"""Plot the decision function for a 2D SVC"""
if ax is None:
ax = plt.gca()
xlim = ax.get_xlim()
ylim = ax.get_ylim()

# create grid to evaluate model
x = np.linspace(xlim[0], xlim[1], 30)
y = np.linspace(ylim[0], ylim[1], 30)
Y, X = np.meshgrid(y, x)
xy = np.vstack([X.ravel(), Y.ravel()]).T
P = model.decision_function(xy).reshape(X.shape)

# plot decision boundary and margins
ax.contour(X, Y, P, colors='k',
levels=[-1, 0, 1], alpha=0.5,
linestyles=['--', '-', '--'])

# plot support vectors
if plot_support:
ax.scatter(model.support_vectors_[:, 0],
model.support_vectors_[:, 1],
s=300, linewidth=1, facecolors='none');
ax.set_xlim(xlim)
ax.set_ylim(ylim)

plt.scatter(X[:, 0], X[:, 1], c=y, s=50, cmap='autumn')
plot_svc_decision_function(model);


• 这条线就是我们希望得到的决策边界啦

• 观察发现有3个点做了特殊的标记，它们恰好都是边界上的点

• 它们就是我们的support vectors（支持向量）

• 在Scikit-Learn中, 它们存储在这个位置 support_vectors_（一个属性）

model.support_vectors_  #拿到决策边界上点（支持向量）的坐标


array([[0.44359863, 3.11530945],
[2.33812285, 3.43116792],
[2.06156753, 1.96918596]])

• 观察可以发现，只需要支持向量我们就可以把模型构建出来

• 接下来我们尝试一下，用不同多的数据点，看看效果会不会发生变化

• 分别使用60个和120个数据点

def plot_svm(N=10, ax=None):
X, y = make_blobs(n_samples=200, centers=2,
random_state=0, cluster_std=0.60)
X = X[:N]
y = y[:N]
model = SVC(kernel='linear', C=1E10)
model.fit(X, y)

ax = ax or plt.gca()
ax.scatter(X[:, 0], X[:, 1], c=y, s=50, cmap='autumn')
ax.set_xlim(-1, 4)
ax.set_ylim(-1, 6)
plot_svc_decision_function(model, ax)

fig, ax = plt.subplots(1, 2, figsize=(16, 6))
for axi, N in zip(ax, [60, 120]): #60个样本点和120个样本点
plot_svm(N, axi)
axi.set_title('N = {0}'.format(N))


• 左边是60个点的结果，右边的是120个点的结果
• 观察发现，只要支持向量没变，其他的数据怎么加无所谓！

### 引入核函数的SVM

• 首先我们先用线性的核来看一下在下面这样比较难的数据集上还能分了吗？
from sklearn.datasets.samples_generator import make_circles
X, y = make_circles(100, factor=.1, noise=.1)

clf = SVC(kernel='linear').fit(X, y)

plt.scatter(X[:, 0], X[:, 1], c=y, s=50, cmap='autumn')
plot_svc_decision_function(clf, plot_support=False);


• 分类效果不好，坏菜喽，分不了了，那咋办呢？试试高维核变换吧！
• We can visualize this extra data dimension using a three-dimensional plot:
#加入了新的维度r，此处是2D->3D
from mpl_toolkits import mplot3d
r = np.exp(-(X ** 2).sum(1))
def plot_3D(elev=30, azim=30, X=X, y=y):
ax = plt.subplot(projection='3d')
ax.scatter3D(X[:, 0], X[:, 1], r, c=y, s=50, cmap='autumn')
ax.view_init(elev=elev, azim=azim)
ax.set_xlabel('x')
ax.set_ylabel('y')
ax.set_zlabel('r')

plot_3D(elev=45, azim=45, X=X, y=y)


#加入径向基函数（高斯核函数）（高斯变换）
clf = SVC(kernel='rbf', C=1E6)
clf.fit(X, y)


SVC(C=1000000.0)

#这回牛逼了！
plt.scatter(X[:, 0], X[:, 1], c=y, s=50, cmap='autumn')
plot_svc_decision_function(clf)
plt.scatter(clf.support_vectors_[:, 0], clf.support_vectors_[:, 1],
s=300, lw=1, facecolors='none');


### 调节C参数

• 当C趋近于无穷大时：意味着分类严格不能有错误
• 当C趋近于很小的时：意味着可以有更大的错误容忍

X, y = make_blobs(n_samples=100, centers=2,
random_state=0, cluster_std=0.8) #0.8：离散程度变大了
plt.scatter(X[:, 0], X[:, 1], c=y, s=50, cmap='autumn');


X, y = make_blobs(n_samples=100, centers=2,
random_state=0, cluster_std=0.8)

fig, ax = plt.subplots(1, 2, figsize=(16, 6))

for axi, C in zip(ax, [10.0, 0.1]):
model = SVC(kernel='linear', C=C).fit(X, y)
axi.scatter(X[:, 0], X[:, 1], c=y, s=50, cmap='autumn')
plot_svc_decision_function(model, axi)
axi.scatter(model.support_vectors_[:, 0],
model.support_vectors_[:, 1],
s=300, lw=1, facecolors='none');
axi.set_title('C = {0:.1f}'.format(C), size=14)


X, y = make_blobs(n_samples=100, centers=2,
random_state=0, cluster_std=1.1)

fig, ax = plt.subplots(1, 2, figsize=(16, 6))

for axi, gamma in zip(ax, [10.0, 0.1]):
model = SVC(kernel='rbf', gamma=gamma).fit(X, y) #gamma控制模型的复杂程度，越高代表维度越高
axi.scatter(X[:, 0], X[:, 1], c=y, s=50, cmap='autumn')
plot_svc_decision_function(model, axi)
axi.scatter(model.support_vectors_[:, 0],
model.support_vectors_[:, 1],
s=300, lw=1, facecolors='none');
axi.set_title('gamma = {0:.1f}'.format(gamma), size=14)


09-22
07-15

04-27 2179
05-20 992
06-13 103
03-01 3523
04-13 603
10-08 377
09-20 2178
©️2020 CSDN 皮肤主题: 游动-白 设计师:上身试试