支持向量机(SVM)

一、SVM介绍

1、线性可分支持向量机:

给定线性可分的训练数据集,通过(硬)间隔最大化或者等价的求解相应的凸二次规划问题学习得到的分离超平面为:w∗x+b=0w∗x+b=0
以及相应的分类决策函数: f(x)=sign(w∗x)+bf(x)=sign(w∗x)+b。

2、线性支持向量机

给定线性不可分的训练数据集,通过软件间隔最大化或者等价的求解相应的凸二次规划问题学习得到的分离超平面为:w∗x+b=0w∗x+b=0
以及相应的分类决策函数: f(x)=sign(w∗x)+bf(x)=sign(w∗x)+b。

3、非线性支持向量机

从非线性分类训练集,通过核函数与软间隔最大化,或者凸二次优化,学习得到的分类决策函数
f(x)=sign(∑i=1NαiyIK(x,xi)+b)f(x)=sign(∑i=1NαiyIK(x,xi)+b)
其中,K(x,z)K(x,z) 是正定核函数。

总结(个人):SVM算法就是为找到距分类样本点间隔最大的分类超平面(w, b)

二、 基于SVM处理月亮数据集分类

  1. 绘图函数
# 边界绘制函数
import numpy as np
from matplotlib.colors import ListedColormap
def plot_decision_boundary(model,axis):
    x0,x1=np.meshgrid(
        np.linspace(axis[0],axis[1],int((axis[1]-axis[0])*100)).reshape(-1,1),
        np.linspace(axis[2],axis[3],int((axis[3]-axis[2])*100)).reshape(-1,1))
    # meshgrid函数是从坐标向量中返回坐标矩阵
    x_new=np.c_[x0.ravel(),x1.ravel()]
    y_predict=model.predict(x_new)#获取预测值
    zz=y_predict.reshape(x0.shape)
    custom_cmap=ListedColormap(['#EF9A9A','#FFF59D','#90CAF9'])
    plt.contourf(x0,x1,zz,cmap=custom_cmap)

  1. 生成测试数据
from sklearn import datasets   #导入数据集
data_x,data_y = datasets.make_moons(n_samples=100, shuffle=True, noise=0.1, random_state=None)#生成月亮数据集

  1. 数据预处理
import matplotlib.pyplot as plt  
plt.scatter(data_x[data_y==0,0],data_x[data_y==0,1])
plt.scatter(data_x[data_y==1,0],data_x[data_y==1,1])
plt.show()

  1. 可视化样本集
import matplotlib.pyplot as plt  
plt.scatter(data_x[data_y==0,0],data_x[data_y==0,1])
plt.scatter(data_x[data_y==1,0],data_x[data_y==1,1])
plt.show()

在这里插入图片描述

1. 基于线性核函数

from sklearn.svm import LinearSVC
liner_svc=LinearSVC(C=1e9,max_iter=100000)#线性svm分类器,iter是迭达次数
liner_svc.fit(data_x,data_y)
#画图并显示参数和截距
plot_decision_boundary(liner_svc,axis=[-3,3,-3,3])
plt.scatter(data_x[data_y==0,0],data_x[data_y==0,1],color='red')
plt.scatter(data_x[data_y==1,0],data_x[data_y==1,1],color='blue')
plt.show()
print('参数权重')
print(liner_svc.coef_)
print('模型截距')
print(liner_svc.intercept_)

在这里插入图片描述

2. 基于多项式核

from sklearn.preprocessing import PolynomialFeatures #导入多项式回归
from sklearn.pipeline import Pipeline #导入python里的管道
def PolynomialSVC(degree,c=10):#多项式svm
     '''
    :param d:阶数
    :param C:正则化常数
    :return:一个Pipeline实例
    '''
    return Pipeline([
            # 将源数据 映射到 3阶多项式
            ("poly_features", PolynomialFeatures(degree=degree)),
            # 标准化
            ("scaler", StandardScaler()),
            # SVC线性分类器
            ("svm_clf", LinearSVC(C=10, loss="hinge", random_state=42,max_iter=10000))
        ])

poly_svc=PolynomialSVC(degree=3)
poly_svc.fit(data_x,data_y)
# 画图
plot_decision_boundary(poly_svc,axis=[-3,3,-3,3])#绘制边界
plt.scatter(data_x[data_y==0,0],data_x[data_y==0,1],color='red')#画点
plt.scatter(data_x[data_y==1,0],data_x[data_y==1,1],color='blue')
plt.show()
print('参数权重')
print(poly_svc.named_steps['svm_clf'].coef_)
print('模型截距')
print(poly_svc.named_steps['svm_clf'].intercept_)

在这里插入图片描述

3. 基于高斯核

在这里插入图片描述

三、 基于SVM处理鸢尾花数据集分类

导入相关库

import numpy as np
from sklearn import datasets   #导入数据集
import matplotlib.pyplot as plt  
from sklearn.preprocessing import StandardScaler
from matplotlib.colors import ListedColormap

编写绘图函数

# 边界绘制函数
def plot_decision_boundary(model,axis):
    x0,x1=np.meshgrid(
        np.linspace(axis[0],axis[1],int((axis[1]-axis[0])*100)).reshape(-1,1),
        np.linspace(axis[2],axis[3],int((axis[3]-axis[2])*100)).reshape(-1,1))
    # meshgrid函数是从坐标向量中返回坐标矩阵
    x_new=np.c_[x0.ravel(),x1.ravel()]
    y_predict=model.predict(x_new)#获取预测值
    zz=y_predict.reshape(x0.shape)
    custom_cmap=ListedColormap(['#EF9A9A','#FFF59D','#90CAF9'])
    plt.contourf(x0,x1,zz,cmap=custom_cmap)

导入测试数据

iris = datasets.load_iris()
data_x = iris.data[:, :2] 
data_y = iris.target

数据预处理

scaler=StandardScaler()# 标准化
data_x = scaler.fit_transform(data_x)#计算训练数据的均值和方差

绘制使用数据的散点图

plt.rcParams["font.sans-serif"] = ['SimHei']    # 用来正常显示中文标签,SimHei是字体名称,字体必须在系统中存在,字体的查看方式和安装第三部分
plt.rcParams['axes.unicode_minus'] = False     # 用来正常显示负号
plt.scatter(data_x[data_y==0, 0],data_x[data_y==0, 1])    # 选取y所有为0+X的第一列
plt.scatter(data_x[data_y==1, 0],data_x[data_y==1, 1])    # 选取y所有为1+X的第一列
plt.scatter(data_x[data_y==2, 0],data_x[data_y==2, 1])    # 选取y所有为2+X的第一列
plt.xlabel('sepal length')    # 设置横坐标标注xlabel为sepal width
plt.ylabel('sepal width')    # 设置纵坐标标注ylabel为sepal length
plt.title('sepal散点图')    # 设置散点图的标题为sepal散点图
plt.show()

在这里插入图片描述

1、基于线性核

from sklearn.svm import LinearSVC
svc_line = LinearSVC(C =1e9,max_iter=1000000) #线性SVM分类器
svc_line.fit(data_x,data_y)#训练svm
plot_decision_boundary(svc_line,axis=[-3,3,-3,4])
plt.scatter(data_x[data_y==0,0],data_x[data_y==0,1])
plt.scatter(data_x[data_y==1,0],data_x[data_y==1,1])
plt.scatter(data_x[data_y==2,0],data_x[data_y==2,1])
plt.show()

在这里插入图片描述

2、基于多项式核

from sklearn.preprocessing import PolynomialFeatures #导入多项式回归
from sklearn.pipeline import Pipeline #导入python里的管道
def PolynomialSVC(degree,c=5):#多项式svm
    """
    :param d:阶数
    :param C:正则化常数
    :return:一个Pipeline实例
    """
    return Pipeline([
            # 将源数据 映射到 3阶多项式
            ("poly_features", PolynomialFeatures(degree=degree)),
            # 标准化
            ("scaler", StandardScaler()),
            # SVC线性分类器
            ("svm_clf", LinearSVC(C=c, loss="hinge", random_state=42,max_iter=100000))
        ])

poly_svc=PolynomialSVC(degree=3)
poly_svc.fit(data_x,data_y)
plot_decision_boundary(poly_svc,axis=[-3,3,-3,4])
plt.scatter(data_x[data_y==0,0],data_x[data_y==0,1])
plt.scatter(data_x[data_y==1,0],data_x[data_y==1,1])
plt.scatter(data_x[data_y==2,0],data_x[data_y==2,1])
plt.show()

在这里插入图片描述

##3、 基于高斯核

from sklearn.svm import SVC #导入svm
def RBFKernelSVC(gamma=1.0):
    return Pipeline([
        ('std_scaler',StandardScaler()),
        ('svc',SVC(kernel='rbf',gamma=gamma))
    ])
svc=RBFKernelSVC(gamma=42)#gamma参数很重要,gamma参数越大,支持向量越小
svc.fit(data_x,data_y)
plot_decision_boundary(svc,axis=[-3,3,-3,4])
plt.scatter(data_x[data_y==0,0],data_x[data_y==0,1])
plt.scatter(data_x[data_y==1,0],data_x[data_y==1,1])
plt.scatter(data_x[data_y==2,0],data_x[data_y==2,1])
plt.show()

在这里插入图片描述

四、总结

SVM在小样本训练集上能够得到比其它算法好很多的结果。支持向量机之所以成为目前最常用,效果最好的分类器之一,在于其优秀的泛化能力,这是是因为其本身的优化目标是结构化风险最小,而不是经验风险最小,因此,通过margin的概念,得到对数据分布的结构化描述,因此减低了对数据规模和数据分布的要求。SVM也并不是在任何场景都比其他算法好,对于每种应用,最好尝试多种算法,然后评估结果。如SVM在邮件分类上,还不如逻辑回归、KNN、bayes的效果好。

五、参考链接


SVM介绍

https://mooc1.chaoxing.com/ueditorupload/read?objectId=ca8ab30e33dc35fcf39cf81b149c74ae&fileOriName=%E6%94%AF%E6%8C%81%E5%90%91%E9%87%8F%E6%9C%BA-%E8%AF%BE%E4%BB%B6-518.docx
https://blog.csdn.net/jiangsujiangjiang/article/details/80568196

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值