A — TT 的神秘任务1
题目描述
这一天,TT 遇到了一个神秘人。
神秘人给了两个数字,分别表示 n 和 k,并要求 TT 给出 k 个奇偶性相同的正整数,使得其和等于 n。
例如 n = 10,k = 3,答案可以为 [4 2 4]。
TT 觉得这个任务太简单了,不愿意做,你能帮他完成吗?
本题是SPJ
Input
第一行一个整数 T,表示数据组数,不超过 1000。
之后 T 行,每一行给出两个正整数,分别表示 n(1 ≤ n ≤ 1e9)、k(1 ≤ k ≤ 100)。
Output
如果存在这样 k 个数字,则第一行输出 “YES”,第二行输出 k 个数字。
如果不存在,则输出 “NO”。
Sample Input
8
10 3
100 4
8 7
97 2
8 8
3 10
5 3
1000000000 9
Sample Output
YES
4 2 4
YES
55 5 5 35
NO
NO
YES
1 1 1 1 1 1 1 1
NO
YES
3 1 1
YES
111111110 111111110 111111110 111111110 111111110 111111110 111111110 111111110 111111120
解题思路
大致分成两种情况:
(1) n < k : 肯定不能实现,直接输出“NO”;
(2) n >= k :
如果是奇数类,将k - 1 个数全部置1,判断剩下的n - k + 1 的奇偶情况,如果是奇数,那么满足;
如果是偶数类,将k - 1 个数全部置2,判断剩下的n - 2 * (k - 1) 的奇偶情况,如果是偶数,那么满足;
解题代码
#include<iostream>
#include<string.h>
#include<algorithm>
using namespace std;
int T, n, k;
int main() {
cin>>T;
for (int a = 0; a < T; a++) {
cin>>n>>k;
if (n < k) {
cout<<"NO"<<endl;
continue;
}
int s1 = n - k + 1; //k - 1 个 1
int s2 = n - 2 * (k - 1); //k - 1 个 2
if (s1 % 2 == 1) {
cout<<"YES"<<endl;
for (int b = 0; b < k - 1; b++) cout<<1<<" ";
cout<<s1<<endl;
continue;
}
if (s2 <= 0) {
cout<<"NO"<<endl;
continue;
}
if (s2 % 2 == 0) {
cout<<"YES"<<endl;
for (int b = 0; b < k - 1; b++) cout<<2<<" ";
cout<<s2<<endl;
continue;
}
cout<<"NO"<<endl;
}
}
B — TT 的神秘任务2
题目描述
在你们的帮助下,TT 轻松地完成了上一个神秘任务。
但是令人没有想到的是,几天后,TT 再次遇到了那个神秘人。
而这一次,神秘人决定加大难度,并许诺 TT,如果能够完成便给他一个奖励。
任务依旧只给了两个数字,分别表示 n 和 k,不过这一次是要求 TT 给出无法被 n 整除的第 k 大的正整数。
例如 n = 3,k = 7,则前 7 个无法被 n 整除的正整数为 [1 2 4 5 7 8 10],答案为 10。
好奇的 TT 想要知道奖励究竟是什么,你能帮帮他吗?
Input
第一行一个整数 T,表示数据组数,不超过 1000。
之后 T 行,每一行给出两个正整数,分别表示 n(2 ≤ n ≤ 1e9)、k(1 ≤ k ≤ 1e9)。
Output
对于每一组数据,输出无法被 n 整除的第 k 大的正整数。
Sample Input
6
3 7
4 12
2 1000000000
7 97
1000000000 1000000000
2 1
Sample Output
10
15
1999999999
113
1000000001
1
解题思路
对于输入的数n,从1开始,每n个数中就有n - 1个是不能被n整除的,所以只需要判断是第几段n - 1中的第几个就可以了
解题代码
#include<iostream>
#include<string.h>
#include<algorithm>
using namespace std;
int T, n, k;
int main() {
cin>>T;
for (int a = 0; a < T; a++) {
cin>>n>>k;
int x = k / (n - 1);
int y = k % (n - 1);
int ans;
if (y == 0) ans = n * (x - 1) + (n - 1);
else ans = n * x + y;
cout<<ans<<endl;
}
return 0;
}
C — TT 的奖励
题目描述
在大家不辞辛劳的帮助下,TT 顺利地完成了所有的神秘任务。
神秘人很高兴,决定给 TT 一个奖励,即白日做梦之捡猫咪游戏。
捡猫咪游戏是这样的,猫咪从天上往下掉,且只会掉在 [0, 10] 范围内,具体的坐标范围如下图所示。
TT 初始站在位置五上,且每秒只能在移动不超过一米的范围内接住掉落的猫咪,如果没有接住,猫咪就会跑掉。例如,在刚开始的一秒内,TT 只能接到四、五、六这三个位置其中一个位置的猫咪。
喜爱猫咪的 TT 想要接住尽可能多的猫咪,你能帮帮他吗?
Input
多组样例。每组样例输入一个 m (0 < m < 100000),表示有 m 只猫咪。
在接下来的 m 行中,每行有两个整数 a b (0 < b < 100000),表示在第 b 秒的时候有一只猫咪掉落在 a 点上。
注意,同一个点上同一秒可能掉落多只猫咪。m = 0 时输入结束。
Output
输出一个整数 x,表示 TT 可能接住的最多的猫咪数。
Sample Input
6
5 1
4 1
6 1
7 2
7 2
8 3
0
Sample Output
4
解题思路
用dp[ ] [ ] 数组存储能够接住的猫咪.
状态转移方程:
第 i 秒,是从第(i - 1)秒转移过来的,而第 j 个位置只能从 j / j + 1/ j - 1 转移而来。
f[ i ][ j ] += max{ f [ i - 1 ][ j ], f [i - 1][j - 1], f[i - 1][j + 1] };
解题代码
#include<iostream>
#include<string.h>
#include<algorithm>
using namespace std;
int m, a, b;
int symbol;
int dp[100010][12];
int main() {
while (cin>>m) {
if (m == 0) break;
symbol = 0;
memset(dp, 0, sizeof(dp));
for (int x = 0; x < m; x++) {
cin>>a>>b;
dp[b][a]++;
if (b > symbol) symbol = b;
}
for(int i = symbol - 1; i >= 0; i--)
for(int j = 0; j < 11; j++)
dp[i][j] += max(dp[i + 1][j + 1], max(dp[i + 1][j], dp[i + 1][j - 1]));
cout<<dp[0][5]<<endl;
}
return 0;
}