《程序设计思维与实践》week13 — 作业题

A — TT 的神秘任务1

题目描述

这一天,TT 遇到了一个神秘人。
神秘人给了两个数字,分别表示 n 和 k,并要求 TT 给出 k 个奇偶性相同的正整数,使得其和等于 n。
例如 n = 10,k = 3,答案可以为 [4 2 4]。
TT 觉得这个任务太简单了,不愿意做,你能帮他完成吗?
本题是SPJ

Input

第一行一个整数 T,表示数据组数,不超过 1000。
之后 T 行,每一行给出两个正整数,分别表示 n(1 ≤ n ≤ 1e9)、k(1 ≤ k ≤ 100)。

Output

如果存在这样 k 个数字,则第一行输出 “YES”,第二行输出 k 个数字。
如果不存在,则输出 “NO”。

Sample Input

8
10 3
100 4
8 7
97 2
8 8
3 10
5 3
1000000000 9

Sample Output

YES
4 2 4
YES
55 5 5 35
NO
NO
YES
1 1 1 1 1 1 1 1
NO
YES
3 1 1
YES
111111110 111111110 111111110 111111110 111111110 111111110 111111110 111111110 111111120

解题思路

大致分成两种情况:
(1) n < k : 肯定不能实现,直接输出“NO”;
(2) n >= k :
如果是奇数类,将k - 1 个数全部置1,判断剩下的n - k + 1 的奇偶情况,如果是奇数,那么满足;
如果是偶数类,将k - 1 个数全部置2,判断剩下的n - 2 * (k - 1) 的奇偶情况,如果是偶数,那么满足;

解题代码

#include<iostream>
#include<string.h>
#include<algorithm>
using namespace std;

int T, n, k;

int main() {
    cin>>T;
    for (int a = 0; a < T; a++) {
        cin>>n>>k;
        
        if (n < k) {
            cout<<"NO"<<endl;
            continue;
        }
        
        int s1 = n - k + 1; //k - 1 个 1
        int s2 = n - 2 * (k - 1); //k - 1 个 2
        
        if (s1 % 2 == 1) {
            cout<<"YES"<<endl;
            for (int b = 0; b < k - 1; b++) cout<<1<<" ";
            cout<<s1<<endl;
            continue;
        }
        
        if (s2 <= 0) {
            cout<<"NO"<<endl;
            continue;
        }
        
        if (s2 % 2 == 0) {
            cout<<"YES"<<endl;
            for (int b = 0; b < k - 1; b++) cout<<2<<" ";
            cout<<s2<<endl;
            continue;
        }
        
        cout<<"NO"<<endl;
    }
}

B — TT 的神秘任务2

题目描述

在你们的帮助下,TT 轻松地完成了上一个神秘任务。
但是令人没有想到的是,几天后,TT 再次遇到了那个神秘人。
而这一次,神秘人决定加大难度,并许诺 TT,如果能够完成便给他一个奖励。
任务依旧只给了两个数字,分别表示 n 和 k,不过这一次是要求 TT 给出无法被 n 整除的第 k 大的正整数。
例如 n = 3,k = 7,则前 7 个无法被 n 整除的正整数为 [1 2 4 5 7 8 10],答案为 10。
好奇的 TT 想要知道奖励究竟是什么,你能帮帮他吗?

Input

第一行一个整数 T,表示数据组数,不超过 1000。
之后 T 行,每一行给出两个正整数,分别表示 n(2 ≤ n ≤ 1e9)、k(1 ≤ k ≤ 1e9)。

Output

对于每一组数据,输出无法被 n 整除的第 k 大的正整数。

Sample Input

6
3 7
4 12
2 1000000000
7 97
1000000000 1000000000
2 1

Sample Output

10
15
1999999999
113
1000000001
1

解题思路

对于输入的数n,从1开始,每n个数中就有n - 1个是不能被n整除的,所以只需要判断是第几段n - 1中的第几个就可以了

解题代码

#include<iostream>
#include<string.h>
#include<algorithm>
using namespace std;

int T, n, k;

int main() {
    cin>>T;
    for (int a = 0; a < T; a++) {
        cin>>n>>k;
        int x = k / (n - 1);
        int y = k % (n - 1);
        int ans;
        
        if (y == 0) ans = n * (x - 1) + (n - 1);
        else ans = n * x + y;
        
        cout<<ans<<endl;
    }
    return 0;
}

C — TT 的奖励

题目描述

在大家不辞辛劳的帮助下,TT 顺利地完成了所有的神秘任务。
神秘人很高兴,决定给 TT 一个奖励,即白日做梦之捡猫咪游戏。
捡猫咪游戏是这样的,猫咪从天上往下掉,且只会掉在 [0, 10] 范围内,具体的坐标范围如下图所示。
TT 初始站在位置五上,且每秒只能在移动不超过一米的范围内接住掉落的猫咪,如果没有接住,猫咪就会跑掉。例如,在刚开始的一秒内,TT 只能接到四、五、六这三个位置其中一个位置的猫咪。
喜爱猫咪的 TT 想要接住尽可能多的猫咪,你能帮帮他吗?

Input

多组样例。每组样例输入一个 m (0 < m < 100000),表示有 m 只猫咪。
在接下来的 m 行中,每行有两个整数 a b (0 < b < 100000),表示在第 b 秒的时候有一只猫咪掉落在 a 点上。
注意,同一个点上同一秒可能掉落多只猫咪。m = 0 时输入结束。

Output

输出一个整数 x,表示 TT 可能接住的最多的猫咪数。

Sample Input

6
5 1
4 1
6 1
7 2
7 2
8 3
0

Sample Output

4

解题思路

用dp[ ] [ ] 数组存储能够接住的猫咪.
状态转移方程:
第 i 秒,是从第(i - 1)秒转移过来的,而第 j 个位置只能从 j / j + 1/ j - 1 转移而来。
f[ i ][ j ] += max{ f [ i - 1 ][ j ], f [i - 1][j - 1], f[i - 1][j + 1] };

解题代码

#include<iostream>
#include<string.h>
#include<algorithm>
using namespace std;

int m, a, b;
int symbol;
int dp[100010][12];

int main() {
    while (cin>>m) {
        if (m == 0) break;
        symbol = 0;
        memset(dp, 0, sizeof(dp));
        for (int x = 0; x < m; x++) {
            cin>>a>>b;
            dp[b][a]++;
            if (b > symbol) symbol = b;
        }
        
        for(int i = symbol - 1; i >= 0; i--)
            for(int j = 0; j < 11; j++)
            dp[i][j] += max(dp[i + 1][j + 1], max(dp[i + 1][j], dp[i + 1][j - 1]));
        
        cout<<dp[0][5]<<endl;
    }
    return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值