tf.keras.layers.Dense()的用法

本文详细解析了tf.keras.layers.Dense全连接层的参数配置,包括输入数据、输出维度、激活函数、偏置项等关键概念,是深度学习模型构建的基础。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

Dense()全连接层

tf.keras.layers.Dense(
    inputs=64,  # 输入该网络层的数据
    units=10,  # 输出的维度大小
    activation=None,  # 选择使用的(激活函数)
    use_bias=True,  # 是否使用(偏置项)
    kernel_initializer=None,  # 卷积核的初始化器
    bias_initializer=tf.zeros_initializer(),  # 偏置项的初始化器
    kernel_regularizer=None,  # 卷积核的正则化
    activaty_regularizer=None,  # 偏置项的正则化
    kernel_constraint=None,  # 对主权重矩阵进行约束
    bias_constraint=None,  # 对偏置向量进行约束
    trainable=True,  # 可以设置为不可训练,(冻结)网络层
    name=None,  # 层的名字
    reuse=None  # 是否重复使用参数
)
评论 5
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值