
numpy库
中南自动化学院至渝
好记性不如烂笔头,多写写
展开
-
CNN 卷积(convolution)操作代码实现,封装成函数
学习《动手学深度学习》,做个笔记 import numpy as np def corr2d(X, K): # 接受输⼊数组X与核数组K,并输出数组Y。 h, w = K.shape Y = np.zeros((X.shape[0] - h + 1, X.shape[1] - w + 1)) for i in range(Y.shape[0]): for j in range(Y.shape原创 2020-10-14 10:49:40 · 25987 阅读 · 1 评论 -
np.c_和np.r_的使用说明(功能和hstack、vstack一样)
先说结论 np.r_是按行方向扩展连接两个矩阵(row的缩写r),就是把两矩阵上下相加,要求列数相等。作用等同于 hstack 函数 np.c_是按列方向扩展连接两个矩阵(column的缩写c),就是把两矩阵左右相加,要求行数相等。作用等同于 vstack 函数 测试代码 import numpy as np z = np.random.randint(10, 20, (3, 3)) k = np.random.randint(1, 10, (3, 3)) print(z) print(k) print(原创 2020-08-15 23:52:45 · 26549 阅读 · 0 评论 -
numpy100问51-100问
也和上一篇一样,只做一个代码留存 51-75问哔哩哔哩视频地址 https://www.bilibili.com/video/BV12h411d71j 76-100问哔哩哔哩视频地址 https://www.bilibili.com/video/BV1pf4y197NE import numpy as np # Z = np.zeros(10, [ ('position', [ ('x', float, 1), # ('y', flo原创 2020-08-14 16:17:24 · 25265 阅读 · 0 评论 -
numpy100问1-50问代码
这儿只是当一个代码留存 # print(sum(range(5),-1))# 第26题测试 import numpy as np # print(np.__version__) # np.show_config() # a = np.empty((1,10)) # print(a) # b = np.empty(10) # print(b) # print(a.size*a.itemsize) # np.info(np.add) # a[0, 4] = 1 # print(a) # Z = n原创 2020-08-14 16:14:33 · 25430 阅读 · 0 评论 -
python numpy库 一些统计量计算
import numpy as np # a = np.array([[3,7,5],[8,4,3],[2,4,9]]) # print ('我们的数组是:') # print (a) # print ('\n') # print ('调用 amin() 函数:', end='') # print (np.amin(a)) # print ('调用 amin() 函数axis=1,代表每一行求最小:', end='') # print (np.amin(a, axis = 1)) # print原创 2020-08-13 14:15:58 · 25956 阅读 · 0 评论 -
python numpy库学习之数组访问
import numpy as np # 访问数组的元素,可以分为访问某个具体位置,某一行、某一列、连续的几个位置、不连续的几个位置、满足特定条件的位置(比如 # 数组中所有的值大于a的元素、所有是虚数的元素、不是无穷大NAN的元素等) a0 = np.array([1, 4, 2, 5, 3]) print(a0) # b = a0[1:3] # 利用:切片获取的新数组是原始数组的一个视图,也就是说b的起始地址和a0[1]相同,连续的几个位置 # print(a0, '\n', b) # pri原创 2020-08-13 09:58:46 · 25329 阅读 · 0 评论 -
python numpy库学习之数组变形,拼接
import numpy as np # x = np.array([1, 2, 3]) # x1 = x.reshape((1, 3)) # x2 = x.reshape((3, 1)) # print(x, '\n', x1, '\n', x2,'\n') t = np.arange(0, 16) # print(t) t1 = t.reshape(2, 8) # print(t1) # t2 = t1.reshape(4, 4) # print(t2) # t3 = t1.reshape(4,原创 2020-08-12 10:26:06 · 25278 阅读 · 0 评论 -
python numpy库学习之多维数组的创建
import numpy as np # 创建多维数组 # a0 = np.array([1, 4.5, 2.1, 5, 3]) #数据类型自动转换(无损精度的转换) # print(a0) # print(a0.dtype) # a0_1 = np.array([1, 4.5, 2.1, 5, 3], dtype=float) #指定数据的类型,强制转换 都变成浮点数,精度无损失 # print(a0_1) # print(a0_1.dtype) # a0_2 = np.array([1, 4.5,原创 2020-08-12 10:18:32 · 25429 阅读 · 0 评论