特征选择
中南自动化学院至渝
好记性不如烂笔头,多写写
展开
-
relif、relif_F、rrelif_F方法 python 代码
import numpy as np'''This code follows the algorithm for ReliefF as described in "An adaptation of Relief for attribute estimation in regression"by M. Robnik-Sikonja and I. KononenkoEquation References in comments are based on the aforementioned art原创 2020-09-27 21:56:54 · 26498 阅读 · 0 评论 -
什么是机器学习里面的特征工程
文章目录1.什么是特征工程?2.数据预处理2.1无量纲2.1.1标准化2.1.2间隔缩放方法2.1.3标准化与规范化之间的区别2.2二进制定量特征2.3对于定性特征,哑编码2.4遗漏值计算2.5数据转换3.功能选择3.1过滤器3.1.1方差选择方法3.1.2相关系数法3.1.3卡方检验3.1.4相互信息法3.2包装器3.2.1递归特征消除3.3嵌入式3.3.1基于惩罚的功能选择3.3.2基于树模型的特征选择4.降维4.1主成分分析(PCA)4.2线性判别分析(LDA)1.什么是特征工程? &n翻译 2020-08-09 18:50:09 · 25165 阅读 · 0 评论 -
二进制思想与特征选择
从这篇博文得到的启发 从N个数中取出任意个数,求和为指定值的解,二进制版本和通用版本常见的特征选择方法有Filter方法和Wrapper方法。Filter方法• 核心思想是利用某种评价准则给特征打分选择分数高的特征作为特征子集• 特点:性能只依赖于评价准则的选取,时间复杂度低,速度很快;但是分类精度较低Wrapper方法• 在筛选特征的过程当中直接利用所选的特征来训练分类器,根据这个...原创 2020-03-26 22:26:05 · 24821 阅读 · 0 评论