求两个正整数的最大公约数和最小公倍数,是程序设计中的一个基本算法,用辗转相除法求得最大公约数,即可再求得最小公倍数。假定两个整数为m和n,其余数为r。最大公约数,它们的余数为0时的除数即是。辗转相除法的算法描述:
求得m与n相除的余数r:r=m%n
为下一次循环作准备:本次循环的除数n,赋给m,作为下一次循环作为被除数(m=n);本次循环的余数r,赋给n,作为下一次循环作为除数(n=r)
判断r或n是否为0:若不为0,则转向第1步,继续循环,否则结束循环,执行第4步。
结束循环时的m值即为最大公约数,原来两数乘积除以最大公约数,即是最小公倍数。
本段解说转自:

利用欧几里德辗转相除法求两个正整数的最大公约数
1.递归
static int Euclid(int number1,int number2) {
if(number1%number2==0) {
return number2;
}
return Euclid(number2,number1%number2);
}
2.普通函数
```java
static int Euclid(int number1,int number2) {
int j;
while(number2!=0) {
j=number1%number2;
number1=number2;
number2=j;
}
return number1;
}

本文详细介绍了如何使用辗转相除法来求解两个正整数的最大公约数(GCD)和最小公倍数(LCM)。通过递归和迭代两种方式实现算法,为程序设计提供了基础数学工具。
3万+

被折叠的 条评论
为什么被折叠?



