1.普通辗转相除法求最大公约数
无需考虑a, b 大小关系
int gcd (int a, int b) {
// if(b == 0) return a;//递推的思路
// return gcd(b, a % b);
return (b ? gcd(b, a % b) : a);
}
2.欧几里得算法扩展应用
应用:快速得到ax + by = 1 的一组整数解
可以发现如果gcd(a,b)!=1;无解,即a,b 不互素,含有可约因子,无法得到整数解
如果gcd(a,b)==1,就可以用扩展欧几里得算法来求解:即ax+by=gcd(a,b),
思路来源
:欧几里德辗转相除中问题解决由大转化为小,即gcd(a,b)转化为gcd(b, a %b) 最后转化为gcd(A,0), A也就是最大公约数,A = gcd(a,b),下面推到以gcd表示最大公约数
欧几里德算法停止的状态是: a= gcd , b = 0 ,那么,这是否能给我们求解 x y 提供一种思路呢?因为,这时候,只要 a = gcd 的系数是 1 ,那么只要 b 的系数是 0 或者其他值(无所谓是多少,反正任何数乘以 0 都等于 0 但是a 的系数一定要是 1),这时,我们就会有: a * 1 + b * 0 = gcd
数学归纳法思想
:f(1)成立,假设f(k)也成立,推导f(k+1)或者f(k -1)也成立,则f(n)都成立
当然f(1)也就是最终状态,但是我们是否可以从最终状态反推到最初的状态呢?
假设当前我们要处理的是求出 a 和 b的最大公约数,并求出 x 和 y 使得 a*x + b*y= gcd ,
而我们已经求出了下一个状态:b 和 a%b 的最大公约数,并且求出了一组x1 和y1 使得: b*x1 + (a%b)*y1 = gcd ,
那么这两个相邻的状态之间是否存在一种关系呢?
即假设 f(k) : a*x + b*y= gcd
要推倒导出 f(k-1) :b*x1 + (a%b)*y1 = gcd (a%b = a - k*b = a - (a/b)*b,“/” 指的是整除)
那么,我们可以进一步得到:
gcd = b*x1 + (a-(a/b)*b)*y1
= b*x1 + a*y1 – (a/b)*b*y1
= a*y1 + b*(x1 – a/b*y1)
对比之前我们的状态:为了满足递推gcd(a,b) = gcd(b,a%b)应用于式子,则递推关系应满足于
x = y1
y = x1 – a/b*y1
那么,我们可以设计以下程序:
int ex_gcd(int a, int b, int *x, int *y) { //只有地址形式,相当于是传出参数,才能在外部获取参数
//(指针获取值,改变值传递)
if(!b) {
*x = 1, *y = 0 ; //*y是任意值
return a; //返回辗转相除的最大公约数的值
}
int xx, yy, ret = ex_gcd(b, a % b, &xx, &yy); //下一次层,递归过程
*x = yy; //回溯过程
*y = xx - a / b * yy;
return ret; //回溯上一层,直到 b= 0 //返回最大公约数
}
3.最小公倍数的求解
公式:lcd(a, b) = a * b / gcd(a,b)
证明:a * b 肯定是a,b 的倍数
由于a = gcd(a,b) * x, b = gcd(a,b) * y
a * b = (gcd(a,b) * x) * (gcd(a,b) * y)
可以看出,少乘以一个gcd(a,b)也是 a,b 的倍数
由于gcd 是最大公约数,所以a,b 的最小公倍数是a * b / gcd(a,b)
————————————————
参考博文链接:https://blog.csdn.net/qq_32426313/article/details/52846170