辗转相除法

本文详细介绍了欧几里得算法(辗转相除法)用于求解两个数的最大公约数(GCD)的基本实现,并探讨了其扩展应用,如何找到使得ax+by=GCD的一组整数解。通过递归与回溯的过程,展示了如何从最终状态反推至初始状态,给出了解决这一问题的算法。同时,文章还提及了最小公倍数(LCM)的求解公式,即LCD(a,b)=a*b/GCD(a,b),并证明了其正确性。
摘要由CSDN通过智能技术生成

1.普通辗转相除法求最大公约数

无需考虑a, b 大小关系

int gcd (int a, int b) {
    // if(b == 0) return a;//递推的思路
    // return gcd(b, a % b);
    return (b ? gcd(b, a % b) : a);
}

2.欧几里得算法扩展应用

应用:快速得到ax + by = 1 的一组整数解
可以发现如果gcd(a,b)!=1;无解,即a,b 不互素,含有可约因子,无法得到整数解

如果gcd(a,b)==1,就可以用扩展欧几里得算法来求解:即ax+by=gcd(a,b),

思路来源:欧几里德辗转相除中问题解决由大转化为小,即gcd(a,b)转化为gcd(b, a %b) 最后转化为gcd(A,0), A也就是最大公约数,A = gcd(a,b),下面推到以gcd表示最大公约数

欧几里德算法停止的状态是: a= gcd , b = 0 ,那么,这是否能给我们求解 x y 提供一种思路呢?因为,这时候,只要 a = gcd 的系数是 1 ,那么只要 b 的系数是 0 或者其他值(无所谓是多少,反正任何数乘以 0 都等于 0 但是a 的系数一定要是 1),这时,我们就会有: a * 1 + b * 0 = gcd
数学归纳法思想f(1)成立,假设f(k)也成立,推导f(k+1)或者f(k -1)也成立,则f(n)都成立
当然f(1)也就是最终状态,但是我们是否可以从最终状态反推到最初的状态呢?

假设当前我们要处理的是求出 a 和 b的最大公约数,并求出 x 和 y 使得 a*x + b*y= gcd ,
而我们已经求出了下一个状态:b 和 a%b 的最大公约数,并且求出了一组x1 和y1 使得: b*x1 + (a%b)*y1 = gcd , 
那么这两个相邻的状态之间是否存在一种关系呢?
即假设 f(k) : a*x + b*y= gcd   
要推倒导出 f(k-1) :b*x1 + (a%b)*y1 = gcd       (a%b = a - k*b = a - (a/b)*b,“/” 指的是整除)  

那么,我们可以进一步得到:

        gcd = b*x1 + (a-(a/b)*b)*y1

            = b*x1 + a*y1 – (a/b)*b*y1

            = a*y1 + b*(x1 – a/b*y1)

    对比之前我们的状态:为了满足递推gcd(a,b) = gcd(b,a%b)应用于式子,则递推关系应满足于

        x = y1
        y = x1 – a/b*y1

那么,我们可以设计以下程序:

int ex_gcd(int a, int b, int *x, int *y) { //只有地址形式,相当于是传出参数,才能在外部获取参数
                                           //(指针获取值,改变值传递)
        if(!b) {
            *x = 1, *y = 0 ; //*y是任意值
            return a;      //返回辗转相除的最大公约数的值
        }
        int xx, yy, ret = ex_gcd(b, a % b, &xx, &yy);   //下一次层,递归过程
        *x = yy;    //回溯过程
        *y = xx - a / b * yy;
        return ret;   //回溯上一层,直到 b= 0 //返回最大公约数
    }

3.最小公倍数的求解

公式:lcd(a, b) = a * b / gcd(a,b)
证明:a * b 肯定是a,b 的倍数
由于a = gcd(a,b) * x, b = gcd(a,b) * y
a * b = (gcd(a,b) * x) * (gcd(a,b) * y)
可以看出,少乘以一个gcd(a,b)也是 a,b 的倍数
由于gcd 是最大公约数,所以a,b 的最小公倍数是a * b / gcd(a,b)

————————————————

参考博文链接:https://blog.csdn.net/qq_32426313/article/details/52846170

数组辗转相除法通常指的是辗转相除法(也称欧几里得算法)在处理数组中的元素时的应用。这个算法主要用于计算两个正整数a和b的最大公约数(GCD)。基本思想是:两个正整数a和b(a>b),它们的最大公约数等于较小的数b和两数相除余数c的最大公约数。 在C++中,如果要对数组中的所有元素应用辗转相除法来找出它们的最大公约数,可以按照以下步骤操作: 1. 假设数组中的第一个元素是最大公约数。 2. 依次将数组中的下一个元素与当前已知的最大公约数进行辗转相除法计算,更新最大公约数。 3. 对数组中每个元素重复此过程,直到遍历完数组中的所有元素。 下面是使用C++实现数组中所有元素辗转相除法的一个示例代码: ```cpp #include <iostream> using namespace std; // 函数声明 int gcd(int a, int b); int findGCDofArray(int arr[], int n); int main() { int arr[] = {12, 18, 24, 30}; // 示例数组 int n = sizeof(arr)/sizeof(arr[0]); // 数组中元素的个数 cout << "数组元素的最大公约数是: " << findGCDofArray(arr, n) << endl; return 0; } // 辗转相除法计算两个整数的最大公约数 int gcd(int a, int b) { while (b != 0) { int c = a % b; a = b; b = c; } return a; } // 找出数组中所有元素的最大公约数 int findGCDofArray(int arr[], int n) { int result = arr[0]; for (int i = 1; i < n; i++) { result = gcd(result, arr[i]); if (result == 1) { // 如果最大公约数为1,则无需继续计算 return 1; } } return result; } ``` 上述代码中,`gcd`函数用于计算两个整数的最大公约数,`findGCDofArray`函数则用于找出数组中所有元素的最大公约数。在`main`函数中,我们创建了一个示例数组并调用`findGCDofArray`函数来计算并打印其元素的最大公约数。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值