N阶涂色问题

        涂色问题在高中再寻常不过,下面逐步给出一道2010年天津高考题目的个人解法,该解法由本人独创,未经允许,严禁转载。

原题如下:

        如图,用四种不同颜色给图中的A,B,C,D,E,F六个点涂色,要求每个点涂一种颜色,且图中每条线段的两个端点涂不同颜色,则不同的涂色方法有( B )

(A)288种

(B)264种

(C)240种

(D)168种

这道题难倒了天津大片考生,被誉为涂色问题的天花板。初看此题,简直云雾缭绕,不知从何处下手。那我们不妨溯本寻源。从最简单的涂色问题入手:

T1 零阶涂色问题

4色涂5块,邻块不同色,共有几种涂法?

答案是:4^{1}\times 3^{4} = 324

这道题恐怕小学生都可以拿来做

很显然,在这五个方块中,ABCDE都是等效的,这是这道题的根本,

所以我们可以任选其一,假设是C,它有4种涂法

然后对B和D涂色,他们都是有3种涂法

然后对A和E涂色,他们也都是3种涂法

因此符合上述算式4^{1}\times 3^{4} = 324

我称之为零阶涂色问题

T2 一阶涂色问题

5色涂6块,邻块不同色,共有几种涂法?

根据我们在高中的经验,这道题应该先涂F,因为当它确定一个颜色以后,ABCDE都不能涂这个颜色

因此,涂上F以后,本题就还原了一个4色涂5块问题

答案为5 * 324 = 1620

从T1得来的经验知:ABCDE都是等效的,而F与他们不等效。因此先处理F,将问题化简。

T3 二阶涂色问题

如图,用四种不同颜色给图中的A,B,C,D,E,F六个点涂色,要求每个点涂一种颜色,且图中每条线段的两个端点涂不同颜色,则不同的涂色方法有____种

4色涂6点,邻点不同色

那么现在,我们可以把这个图横过来。 看到此图,我们应该也能很快想到将BD,AC作为特殊点处理,然后把这道题归纳成一个4点问题。

或者:

但是显然,这道题没有这么简单,我们需要讨论BD是否同色以及AC是否同色

1. 当BD同色时(左图),算式应当为4 \times 3^{1} \times 2^{3} = 96

2. 当AC同色时(右图),算式应当为4 \times 3^{1} \times 2^{3} = 96

3. 当AC,BD均不同色时,算式应当为A^{4}_{4} \times 2\times2 = 96

当然,我们发现1,2有重复情况,应当使用容斥原理

4. 当AC,BD均同色时,算式应当为4 \times 3 \times 2^{1} \times 1^{1} = 24

最终结果应当为96+96+96-24 = 264

因此,二阶涂色问题秉持着和前两者相同的思想,以此思想解决涂色问题,势如破竹

由此看来,这道题并非得来毫无缘由。以此思想接续,涂色问题还可以变得更难。不过我不在此赘述。因为更难的题目涉及多项容斥,计算复杂。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值