涂色问题在高中再寻常不过,下面逐步给出一道2010年天津高考题目的个人解法,该解法由本人独创,未经允许,严禁转载。
原题如下:
如图,用四种不同颜色给图中的A,B,C,D,E,F六个点涂色,要求每个点涂一种颜色,且图中每条线段的两个端点涂不同颜色,则不同的涂色方法有( B )
(A)288种
(B)264种
(C)240种
(D)168种
这道题难倒了天津大片考生,被誉为涂色问题的天花板。初看此题,简直云雾缭绕,不知从何处下手。那我们不妨溯本寻源。从最简单的涂色问题入手:
T1 零阶涂色问题
4色涂5块,邻块不同色,共有几种涂法?
答案是:
这道题恐怕小学生都可以拿来做
很显然,在这五个方块中,ABCDE都是等效的,这是这道题的根本,
所以我们可以任选其一,假设是C,它有4种涂法
然后对B和D涂色,他们都是有3种涂法
然后对A和E涂色,他们也都是3种涂法
因此符合上述算式
我称之为零阶涂色问题
T2 一阶涂色问题
5色涂6块,邻块不同色,共有几种涂法?
根据我们在高中的经验,这道题应该先涂F,因为当它确定一个颜色以后,ABCDE都不能涂这个颜色
因此,涂上F以后,本题就还原了一个4色涂5块问题
答案为
从T1得来的经验知:ABCDE都是等效的,而F与他们不等效。因此先处理F,将问题化简。
T3 二阶涂色问题
如图,用四种不同颜色给图中的A,B,C,D,E,F六个点涂色,要求每个点涂一种颜色,且图中每条线段的两个端点涂不同颜色,则不同的涂色方法有____种
4色涂6点,邻点不同色
那么现在,我们可以把这个图横过来。 看到此图,我们应该也能很快想到将BD,AC作为特殊点处理,然后把这道题归纳成一个4点问题。
或者:
但是显然,这道题没有这么简单,我们需要讨论BD是否同色以及AC是否同色
1. 当BD同色时(左图),算式应当为
2. 当AC同色时(右图),算式应当为
3. 当AC,BD均不同色时,算式应当为
当然,我们发现1,2有重复情况,应当使用容斥原理
4. 当AC,BD均同色时,算式应当为
最终结果应当为
因此,二阶涂色问题秉持着和前两者相同的思想,以此思想解决涂色问题,势如破竹。
由此看来,这道题并非得来毫无缘由。以此思想接续,涂色问题还可以变得更难。不过我不在此赘述。因为更难的题目涉及多项容斥,计算复杂。