N阶涂色问题

        涂色问题在高中再寻常不过,下面逐步给出一道2010年天津高考题目的个人解法,该解法由本人独创,未经允许,严禁转载。

原题如下:

        如图,用四种不同颜色给图中的A,B,C,D,E,F六个点涂色,要求每个点涂一种颜色,且图中每条线段的两个端点涂不同颜色,则不同的涂色方法有( B )

(A)288种

(B)264种

(C)240种

(D)168种

这道题难倒了天津大片考生,被誉为涂色问题的天花板。初看此题,简直云雾缭绕,不知从何处下手。那我们不妨溯本寻源。从最简单的涂色问题入手:

T1 零阶涂色问题

4色涂5块,邻块不同色,共有几种涂法?

答案是:4^{1}\times 3^{4} = 324

这道题恐怕小学生都可以拿来做

很显然,在这五个方块中,ABCDE都是等效的,这是这道题的根本,

所以我们可以任选其一,假设是C,它有4种涂法

然后对B和D涂色,他们都是有3种涂法

然后对A和E涂色,他们也都是3种涂法

因此符合上述算式4^{1}\times 3^{4} = 324

我称之为零阶涂色问题

T2 一阶涂色问题

5色涂6块,邻块不同色,共有几种涂法?

根据我们在高中的经验,这道题应该先涂F,因为当它确定一个颜色以后,ABCDE都不能涂这个颜色

因此,涂上F以后,本题就还原了一个4色涂5块问题

答案为5 * 324 = 1620

从T1得来的经验知:ABCDE都是等效的,而F与他们不等效。因此先处理F,将问题化简。

T3 二阶涂色问题

如图,用四种不同颜色给图中的A,B,C,D,E,F六个点涂色,要求每个点涂一种颜色,且图中每条线段的两个端点涂不同颜色,则不同的涂色方法有____种

4色涂6点,邻点不同色

那么现在,我们可以把这个图横过来。 看到此图,我们应该也能很快想到将BD,AC作为特殊点处理,然后把这道题归纳成一个4点问题。

或者:

但是显然,这道题没有这么简单,我们需要讨论BD是否同色以及AC是否同色

1. 当BD同色时(左图),算式应当为4 \times 3^{1} \times 2^{3} = 96

2. 当AC同色时(右图),算式应当为4 \times 3^{1} \times 2^{3} = 96

3. 当AC,BD均不同色时,算式应当为A^{4}_{4} \times 2\times2 = 96

当然,我们发现1,2有重复情况,应当使用容斥原理

4. 当AC,BD均同色时,算式应当为4 \times 3 \times 2^{1} \times 1^{1} = 24

最终结果应当为96+96+96-24 = 264

因此,二阶涂色问题秉持着和前两者相同的思想,以此思想解决涂色问题,势如破竹

由此看来,这道题并非得来毫无缘由。以此思想接续,涂色问题还可以变得更难。不过我不在此赘述。因为更难的题目涉及多项容斥,计算复杂。

内容概要:《2024年中国城市低空经济发展指数报告》由36氪研究院发布,指出低空经济作为新质生产力的代表,已成为中国经济新的增长点。报告从发展环境、资金投入、创新能力、基础支撑和发展成效五个维度构建了综合指数评价体系,评估了全国重点城市的低空经济发展状况。北京和深圳在总指数中名列前茅,分别以91.26和84.53的得分领先,展现出强大的资金投入、创新能力和基础支撑。低空经济主要涉及无人机、eVTOL(电动垂直起降飞行器)和直升机等产品,广泛应用于农业、物流、交通、应急救援等领域。政策支持、市场需求和技术进步共推动了低空经济的快速发展,预计到2026年市场规模将突破万亿元。 适用人群:对低空经济发展感兴趣的政策制定者、投资者、企业和研究人员。 使用场景及目标:①了解低空经济的定义、分类和发展驱动力;②掌握低空经济的主要应用场景和市场规模预测;③评估各城市在低空经济发展中的表现和潜力;④为政策制定、投资决策和企业发展提供参考依据。 其他说明:报告强调了政策监管、产业生态建设和区域融合错位的重要性,提出了加强法律法规建设、人才储备和基础设施建设等建议。低空经济正加速向网络化、智能化、规模化和集聚化方向发展,各地应找准自身比较优势,实现差异化发展。
数据集一个高质量的医学图像数据集,专门用于脑肿瘤的检测和分类研究以下是关于这个数据集的详细介绍:该数据集包含5249张脑部MRI图像,分为训练集和验证集。每张图像都标注了边界框(Bounding Boxes),并按照脑肿瘤的类型分为四个类别:胶质瘤(Glioma)、脑膜瘤(Meningioma)、无肿瘤(No Tumor)和垂体瘤(Pituitary)。这些图像涵盖了不同的MRI扫描角度,包括矢状面、轴面和冠状面,能够全面覆盖脑部解剖结构,为模型训练提供了丰富多样的数据基础。高质量标注:边界框是通过LabelImg工具手动标注的,标注过程严谨,确保了标注的准确性和可靠性。多角度覆盖:图像从不同的MRI扫描角度拍摄,包括矢状面、轴面和冠状面,能够全面覆盖脑部解剖结构。数据清洗与筛选:数据集在创建过程中经过了彻底的清洗,去除了噪声、错误标注和质量佳的图像,保证了数据的高质量。该数据集非常适合用于训练和验证深度学习模型,以实现脑肿瘤的检测和分类。它为开发医学图像处理中的计算机视觉应用提供了坚实的基础,能够帮助研究人员和开发人员构建更准确、更可靠的脑肿瘤诊断系统。这个数据集为脑肿瘤检测和分类的研究提供了宝贵的资源,能够帮助研究人员开发出更准确、更高效的诊断工具,从而为脑肿瘤患者的早期诊断和治疗规划提供支持。
### 南邮 NOJ 涂色问题的解题思路 涂色问题是典型的算法设计类题目,通常涉及图论中的染色模型或者动态规划方法。以下是针对此类问题的一种通用解决策略: #### 1. **问题建模** 假设涂色问题的目标是对某些区域进行着色,满足特定条件(如相邻区域颜色不同)。可以将其抽象为一个图结构,其中每个节点代表一个待涂色的对象,边表示对象之间的约束关系。 - 如果两个区域相邻,则它们之间存在一条边连接对应的节点。 - 颜色的选择可以通过回溯法或贪心算法来完成。 #### 2. **核心算法——回溯法** 回溯法是一种通过尝试所有可能的颜色组合并验证其合法性的方法。具体实现如下: ```c #include <stdio.h> #define MAX_N 100 // 假设最多有100个区域 int graph[MAX_N][MAX_N]; // 图的邻接矩阵 int color[MAX_N]; // 存储每个区域的颜色 int n, k; // n: 区域数;k: 可选颜色数 // 判断当前区域是否能使用某种颜色 bool isSafe(int node, int c) { for (int i = 0; i < n; ++i) { if (graph[node][i] && color[i] == c) { // 若相邻区域已有相颜色 return false; } } return true; } // 主函数:递归调用 bool solve(int node) { if (node == n) { // 所有区域均已分配颜色 return true; } for (int c = 1; c <= k; ++c) { // 尝试每种颜色 if (isSafe(node, c)) { // 当前颜色安全 color[node] = c; // 给定区域赋值该颜色 if (solve(node + 1)) { // 进入下一个区域 return true; } color[node] = 0; // 回溯操作 } } return false; // 无法找到解决方案 } ``` 上述代码实现了基于回溯法的涂色方案生成器[^5]。 #### 3. **优化技巧** 为了提高效率,可以在以下几个方面改进: - 使用剪枝技术减少必要的分支探索; - 对于大规模数据集,考虑采用启发式搜索或其他近似算法替代完全枚举。 --- ### 动态规划的应用场景 如果涂色问题具有重叠子问题特性(即多个状态共享相的计算过程),则可引入动态规划降低时间复杂度。例如,在一维数组上的连续区间涂色时,定义`dp[i][j]`表示从前`i`个元素中选取部分进行涂色,并使最后一个被涂色的位置位于第`j`处所需的最小代价。 --- ### 总结 综上所述,南邮NOJ平台上的涂色问题主要考察选手对图论基础知识以及常见算法的理解程度。推荐优先掌握回溯法及其变体形式作为基础工具箱的一部分[^6]。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值