hadoop
hadoop相关错误解决方案和总结
坏孩子充电自习室
这个作者很懒,什么都没留下…
展开
-
hadoop2.0 3.0的区别
在这篇文章中,我们将讨论Hadoop 2.x与Hadoop 3.x之间的比较。 Hadoop3版本中添加了哪些新功能,Hadoop3中兼容的Hadoop 2程序,Hadoop 2和Hadoop 3有什么区别? 我们希望Hadoop 2和Hadoop 3之间的这个功能的区别将帮助回答上述问题。大数据Hadoop2.x与Hadoop3.x相比较有哪些变化Hadoop 2.x与Hadoop 3.x之间的功能比较本节将讲述Hadoop 2.x与Hadoop 3.x之间的22个差异。 现在让我们逐一讨论1.L转载 2021-08-09 17:14:47 · 2955 阅读 · 0 评论 -
Yarn面试专题
1.什么是YARN?与Hadoop类似,YARN是Spark的主要功能之一,提供了一个中央资源管理平台,可在整个群集中提 供可扩展的操作。 YARN是一个分布式容器管理器,例如Mesos,而Spark是一个数据处理工具。Spark可以在YARN上运行,就像Hadoop Map Reduce可以在YARN上运行一样。2.FIFO 调度模式的基本原理、优点和缺点?基本原理:按照先后顺序决定资源的使用,资源优先满足最先来的 job。第一个 job 优先获 取所有可用的资源,接下来第二个 job 再获取剩余原创 2021-08-05 09:10:06 · 184 阅读 · 0 评论 -
MapReduce常见面试题
1.MR程序运行的时候会有什么比较常见的问题?比如说作业中大部分都完成了,但是总有几个reduce一直在运行。这是因为这几个reduce中的处理的数据要远远大于其他的reduce,可能是对键值对任务划分的不均匀 造成的数据倾斜。解决的方法可以在分区的时候重新定义分区规则对于value数据很多的key可以进行拆分、均匀打散等处 理,或者是在map端的combiner中进行数据预处理的操作。2.简答说一下hadoop的map-reduce编程模型首先map task会从本地文件系统读取数据,转换成ke原创 2021-08-05 09:09:30 · 524 阅读 · 0 评论 -
HDFS常见面试题
1.介绍parition和block有什么关联关系?答: 1)hdfs中的block是分布式存储的最小单元,等分,可设置冗余,这样设计有一部分磁盘空 间的浪费,但是整齐的block大小,便于快速找到、读取对应的内容;2)Spark中的partion是弹 性分布式数据集RDD的最小单元,RDD是由分布在各个节点上的partion组成的。partion是指的 spark在计算过程中,生成的数据在计算空间内最小单元,同一份数据(RDD) 的partion大小不 一,数量不定,是根据application里原创 2021-08-05 09:08:04 · 805 阅读 · 0 评论 -
SLF4J: Class path contains multiple SLF4J bindings. SLF4J: Found binding in [jar:file:/opt/module/fl
添加链接描述原创 2021-04-07 12:29:40 · 706 阅读 · 0 评论 -
Container exited with a non-zero exit code 143
Container killed on request. Exit code is 143[2021-03-28 09:34:25.568]Container exited with a non-zero exit code 1431.不靠谱的方式:多运行几遍代码。巧了就不会遇到这个问题了2.靠谱的方式:在yarn-site.xml中添加如下配置信息,然后重启yarn<property><description>Whether virtual memory limits原创 2021-03-28 09:46:38 · 6915 阅读 · 3 评论 -
解决执行MapReduce代码是报如下错误: Job job_1607082280342_0001 failed with state FAILED due to: Task failed task_
Error: java.lang.RuntimeException: java.lang.ClassNotFoundException: Class cn.itcast.mapreduce.WordCountMapper not found错因:1.忘记导入jar 包路径https://blog.csdn.net/qq_43382641/article/details/1071593642.导包错误添加链接描述3.解决问题最根本的方案,还是看自己的log日志信息...原创 2021-03-20 14:54:03 · 2949 阅读 · 0 评论 -
Call From hadoop102/192.168.10.102 to hadoop102:8020 failed on connection exception: java.net.Connec
Call From hadoop102/192.168.10.102 to hadoop102:8020 failed on connection exception: java.net.ConnectException: 拒绝连接;2021-03-20 08:41:20,294 INFO client.RMProxy: Connecting to ResourceManager at hadoop103/192.168.10.103:8032java.net.ConnectException: Cal原创 2021-03-20 09:01:52 · 10965 阅读 · 7 评论 -
MapReduce 开发总结-尚硅谷
1)输入数据接口:InputFormat(1)默认使用的实现类是:TextInputFormat(2)TextInputFormat 的功能逻辑是:一次读一行文本,然后将该行的起始偏移量作为key,行内容作为 value 返回。(3)CombineTextInputFormat 可以把多个小文件合并成一个切片处理,提高处理效率。2)逻辑处理接口:Mapper用户根据业务需求实现其中三个方法:map() setup() cleanup ()3)Partitioner 分区(1)有默认实现 Ha原创 2021-03-16 12:33:55 · 180 阅读 · 0 评论 -
MapReduce阶段常见错误及解决方案
1)导包容易出错。尤其 Text 和 CombineTextInputFormat。 2)Mapper 中第一个输入的参数必须是 LongWritable 或者 NullWritable,不可以是 IntWritable.报的错误是类型转换异常。3)java.lang.Exception: java.io.IOException: Illegal partition for 13926435656 (4),说明 Partition和 ReduceTask 个数没对上,调整 ReduceTask 个数。原创 2021-03-16 12:28:36 · 1251 阅读 · 0 评论 -
log4j.properties 尚硅谷hadoop3.x maven下 log4j的配置文件内容
log4j.rootLogger=INFO, stdout log4j.appender.stdout=org.apache.log4j.ConsoleAppender log4j.appender.stdout.layout=org.apache.log4j.PatternLayout log4j.appender.stdout.layout.ConversionPattern=%d %p [%c] - %m%n log4j.appender.logfile=org.apache.log4j.Fi原创 2021-03-13 20:43:45 · 520 阅读 · 1 评论 -
HDFS 的 Shell 操作
1.1基本语法hadoop fs 具体命令 or hdfs dfs 具体命令(两个完全一样)1.2命令大全[atguigu@hadoop102 current]$ hadoop fs Usage: hadoop fs [generic options] [-appendToFile <localsrc> ... <dst>] [-cat [-ignoreCrc] <src> ...] [-checksum <src> ...] [-chgrp原创 2021-03-13 14:36:53 · 175 阅读 · 0 评论 -
Hadoop 集群启停脚本
#!/bin/bashif [ $# -lt 1 ]then echo "No Args Input..." exit ;ficase $1 in"start") echo " =================== 启动 hadoop 集群 ===================" echo " --------------- 启动 hdfs ---------------" ssh hadoop102 "/opt/module/hadoop-3.1.3/sbin/start-dfs.原创 2021-03-12 17:20:36 · 382 阅读 · 0 评论 -
循环复制文件到所有节点的相同目录下 xsync
hadoop 集群 自动分发同步脚本#!/bin/bash#1. 判断参数个数if [ $# -lt 1 ]then echo Not Enough Arguement! exit;fi#2. 遍历集群所有机器for host in hadoop102 hadoop103 hadoop104do echo ==================== $host ==================== #3. 遍历所有目录,挨个发送 for file in $@ do #4. 判原创 2021-03-12 17:19:27 · 157 阅读 · 0 评论