求GCD(最大公约数)的两种方式

一、更相减损法 两个正整数a和b(a>b),它们的最大公约数等于a-b的差值c和较小数b的最大公约数。

我来介绍一下这个算法的优点,就是避免了大整数取模导致效率低下,但是运算次数要比辗转相除多得多,所以我们在使用的时候需要判断一下。
代码:

int gcd(int a,int b)
{
    if(a==b)
        return a;
    if(a>b)
        return gcd(a-b,b);
    if(a<b)
        return gcd(b-a,a);
}

二、辗转相除法 两个正整数a和b(a>b),它们的最大公约数等于a除以b的余数c和b之间的最大公约数。

其实就是把更相减损变得更高级一点(加减运算变乘除运算,提升了一个级别)

但是大整数取模会让一些题极为头疼,所以我们还是要慎重考虑什么时候用更相减损什么时候用辗转相除。

代码:

int gcd(int a,int b)
{
    if(b==0)
        return a;
    else
        return gcd(b,a%b);
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值