题意:求两个串的最小公共唯一子串
题解:后缀数组
利用height数组筛选,sa来区分子串位置。详见注释。
#define _crt_secure_no_warnings
#include<iostream>
#include<cstdio>
#include<string>
#include<cstring>
#include<algorithm>
#include<queue>
#include<stack>
#include<cmath>
#include<vector>
#include<fstream>
#include<set>
#include<map>
#define ll long long
using namespace std;
const int maxn = 20010;
int t1[maxn], t2[maxn], c[maxn];//求 sa 数组需要的中间变量,不需要赋值
//待排序的字符串放在 s 数组中,从 s[0] 到 s[n-1], 长度为 n, 且最大值小于 m,
//除 s[n-1] 外的所有 s[i] 都大于 0, r[n-1]=0
//函数结束以后结果放在 sa 数组中
bool cmp(int* r, int a, int b, int l) {
return r[a] == r[b] && r[a + l] == r[b + l];
}
void da(int str[], int sa[], int rank[], int height[], int n, int m) {
n++;
int i, j, p, * x = t1, * y = t2;
//第一轮基数排序,如果 s 的最大值很大,可改为快速排序
for (i = 0; i < m; i++)c[i] = 0;
for (i = 0; i < n; i++)c[x[i] = str[i]]++;
for (i = 1; i < m; i++)c[i] += c[i - 1];
for (i = n - 1; i >= 0; i--)sa[--c[x[i]]] = i;
for (j = 1; j <= n; j <<= 1) {
p = 0;
//直接利用 sa 数组排序第二关键字
for (i = n - j; i < n; i++)y[p++] = i;//后面的 j 个数第二关键字为空的最小
for (i = 0; i < n; i++)if (sa[i] >= j)y[p++] = sa[i] - j;
//这样数组 y 保存的就是按照第二关键字排序的结果
//基数排序第一关键字
for (i = 0; i < m; i++)c[i] = 0;
for (i = 0; i < n; i++)c[x[y[i]]]++;
for (i = 1; i < m; i++)c[i] += c[i - 1];
for (i = n - 1; i >= 0; i--)sa[--c[x[y[i]]]] = y[i];
//根据 sa 和 x 数组计算新的 x 数组
swap(x, y);
p = 1; x[sa[0]] = 0;
for (i = 1; i < n; i++)
x[sa[i]] = cmp(y, sa[i - 1], sa[i], j) ? p - 1 : p++;
if (p >= n)break;
m = p;//下次基数排序的最大值
}
int k = 0;
n--;
for (i = 0; i <= n; i++)rank[sa[i]] = i;
for (i = 0; i < n; i++) {
if (k)k--;
j = sa[rank[i] - 1];
while (str[i + k] == str[j + k])k++;
height[rank[i]] = k;
}
}
int rank[maxn], height[maxn], sa[maxn];
char s1[maxn], s2[maxn];
int r[maxn];
int main() {
scanf("%s%s", s1, s2);
int len1 = strlen(s1), len2 = strlen(s2);
int n = len1 + len2 + 1;
for (int i = 0; i < len1; i++) r[i] = s1[i];
r[len1] = 1;
for (int i = 0; i < len2; i++) r[i + len1 + 1] = s2[i];
r[n] = 0;
da(r, sa, rank, height, n, 128);
int ans = n;
for (int i = 1; i <= n; i++) {
int mipos = min(sa[i], sa[i - 1]);
int mapos = max(sa[i], sa[i - 1]); //只出现一次 一定相邻
if (mipos <= len1 && mapos > len1) { //排名相邻且分别在两个串中
if (height[i] > height[i - 1] && height[i] > height[i + 1]) //保证唯一
ans = min(ans, max(height[i - 1], height[i + 1]) + 1); //唯一要+1,即i-1只跟i配
}
}
printf("%d\n", ans == n ? -1 : ans);
return 0;
}