CodeForces 461B Appleman and Tree (树形dp)

题意:给出n个节点的一棵树,每个节点要么是白色,要么是黑色,删除某些边,使得每一连通块都只有一个黑色节点,求有多少种方法。

题解:树形dp
d p [ u ] [ 1 ] dp[u][1] dp[u][1]:以u为根的树含有黑色节点的方案数。
d p [ u ] [ 0 ] dp[u][0] dp[u][0]:以u为根的树不含黑色节点的方案数。
然后考虑当前节点与子节点之间是否删除边,更新dp数组即可。

#define _CRT_SECURE_NO_WARNINGS
#include<iostream>
#include<cstdio>
#include<string>
#include<cstring>
#include<algorithm>
#include<queue>
#include<stack>
#include<cmath>
#include<vector>
#include<fstream>
#include<set>
#include<map>
#include<sstream>
#include<iomanip>
#define ll long long
using namespace std;
const int maxn = 1e5 + 10;
const int mod = 1e9 + 7;
int n, u, c[maxn], head[maxn], k, vis[maxn];
ll dp[maxn][2];
struct node {
	int next, v;
}edge[maxn * 2];
void add(int u, int v) {
	edge[++k].next = head[u];
	edge[k].v = v;
	head[u] = k;
}
void dfs(int u) {
	vis[u] = 1;
	dp[u][c[u]] = 1;
	for (int i = head[u]; i; i = edge[i].next) {
		int v = edge[i].v;
		if (vis[v]) continue;
		dfs(v);
		dp[u][1] = (dp[u][0] * dp[v][1] + dp[u][1] * (dp[v][1] + dp[v][0])) % mod;
		dp[u][0] = dp[u][0] * (dp[v][1] + dp[v][0]) % mod;
	}
}
int main() {
	scanf("%d", &n);
	for (int i = 1; i <= n - 1; i++) {
		scanf("%d", &u);
		add(u, i);
		add(i, u);
	}
	for (int i = 0; i <= n - 1; i++) scanf("%d", &c[i]);
	dfs(0);
	printf("%d\n", dp[0][1]);
	return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值