题意:给出n个节点的一棵树,每个节点要么是白色,要么是黑色,删除某些边,使得每一连通块都只有一个黑色节点,求有多少种方法。
题解:树形dp
d
p
[
u
]
[
1
]
dp[u][1]
dp[u][1]:以u为根的树含有黑色节点的方案数。
d
p
[
u
]
[
0
]
dp[u][0]
dp[u][0]:以u为根的树不含黑色节点的方案数。
然后考虑当前节点与子节点之间是否删除边,更新dp数组即可。
#define _CRT_SECURE_NO_WARNINGS
#include<iostream>
#include<cstdio>
#include<string>
#include<cstring>
#include<algorithm>
#include<queue>
#include<stack>
#include<cmath>
#include<vector>
#include<fstream>
#include<set>
#include<map>
#include<sstream>
#include<iomanip>
#define ll long long
using namespace std;
const int maxn = 1e5 + 10;
const int mod = 1e9 + 7;
int n, u, c[maxn], head[maxn], k, vis[maxn];
ll dp[maxn][2];
struct node {
int next, v;
}edge[maxn * 2];
void add(int u, int v) {
edge[++k].next = head[u];
edge[k].v = v;
head[u] = k;
}
void dfs(int u) {
vis[u] = 1;
dp[u][c[u]] = 1;
for (int i = head[u]; i; i = edge[i].next) {
int v = edge[i].v;
if (vis[v]) continue;
dfs(v);
dp[u][1] = (dp[u][0] * dp[v][1] + dp[u][1] * (dp[v][1] + dp[v][0])) % mod;
dp[u][0] = dp[u][0] * (dp[v][1] + dp[v][0]) % mod;
}
}
int main() {
scanf("%d", &n);
for (int i = 1; i <= n - 1; i++) {
scanf("%d", &u);
add(u, i);
add(i, u);
}
for (int i = 0; i <= n - 1; i++) scanf("%d", &c[i]);
dfs(0);
printf("%d\n", dp[0][1]);
return 0;
}