题意:青蛙A和青蛙B,并且规定纬度线上东经0度处为原点,由东往西为正方向,单位长度1米,这样我们就得到了一条首尾相接的数轴。设青蛙A的出发点坐标是x,青蛙B的出发点坐标是y。青蛙A一次能跳m米,青蛙B一次能跳n米,两只青蛙跳一次所花费的时间相同。纬度线总长L米。现在要你求出它们跳了几次以后才会碰面。
题解:扩展欧几里得
(x+mt)%L = (y+nt)%L,即x-y = (n-m)* t+L*k。(t、K未知)
另gcd(n-m, L) = d,可得d = (n-m) * [t*d/(x-y)] + L*[K*d/(x-y)]
,接着用扩展欧几里得解即可。
#define _CRT_SECURE_NO_WARNINGS
#include<iostream>
#include<cstdio>
#include<string>
#include<cstring>
#include<algorithm>
#include<queue>
#include<stack>
#include<cmath>
#include<vector>
#include<fstream>
#include<set>
#include<map>
#include<sstream>
#include<iomanip>
#define ll long long
using namespace std;
int x, y, m, n, l;
//扩展欧几里得
//若a和b为正整数,则存在整数x,y使得gcd(a,b)=ax+by;
void exgcd(ll a, ll b, ll& d, ll& x, ll& y) { //d为a、b的最大公约数
if (!b) {
d = a;
x = 1;
y = 0;
}
else {
exgcd(b, a % b, d, y, x);
y -= x * (a / b);
}
}
int main() {
scanf("%d%d%d%d%d", &x, &y, &m, &n, &l);
ll d, k, t;
exgcd(n - m, l, d, t, k);
if ((x - y) % d != 0) puts("Impossible");
else {
t = t * (x - y) / d;
int mod = l / d;
printf("%lld\n", ((t % mod) + mod) % mod);
}
return 0;
}