题意:n个插座(字符串表示),m个插头(字符串表示),k种转换器,转换器有无数个,可以将插头s2转换为s1,求最少多少个插头不能插上插座。
题解:最大流
我们将插座和插头都视作同一字符串,用map表示,即能插上就直接插上,不再建边,差别体现在与源点还是汇点相连。
①将源点0与插座建边,权值为1。
②将汇点num+1与插头建边,权值++,因为插头可能相等。num表示总的点,所以要等所有边建好后,再将插头与汇点建边。
③将转换器建边,因为可以将插头s2转换为s1,相当于s1->s2。
这里用的sap。用字符数组map记录不了,不知道为什么,改成string。
#define _CRT_SECURE_NO_WARNINGS
#include<iostream>
#include<cstdio>
#include<string>
#include<cstring>
#include<algorithm>
#include<queue>
#include<stack>
#include<cmath>
#include<vector>
#include<fstream>
#include<set>
#include<map>
#include<sstream>
#include<iomanip>
#define ll long long
using namespace std;
const int inf = 0x3f3f3f3f;
map<string, int> ma;
int n, m, k, num, a[1111];
string s[1111], s1, s2;
/*
* SAP 邻接矩阵形式
* 点的编号从 0 开始
* 增加个 flow 数组,保留原矩阵 maze, 可用于多次使用最大流
*/
const int MAXN = 1100;
int maze[MAXN][MAXN];
int gap[MAXN], dis[MAXN], pre[MAXN], cur[MAXN];
int flow[MAXN][MAXN];//存最大流的流量
int sap(int start, int end, int nodenum) {
memset(cur, 0, sizeof(cur));
memset(dis, 0, sizeof(dis));
memset(gap, 0, sizeof(gap));
memset(flow, 0, sizeof(flow));
int u = pre[start] = start, maxflow = 0, aug = -1;
gap[0] = nodenum;
while (dis[start] < nodenum) {
loop:
for (int v = cur[u]; v < nodenum; v++)
if (maze[u][v] - flow[u][v] && dis[u] == dis[v] + 1) {
if (aug == -1 || aug > maze[u][v] - flow[u][v]) aug = maze[u][v] - flow[u][v];
pre[v] = u;
u = cur[u] = v;
if (v == end) {
maxflow += aug;
for (u = pre[u]; v != start; v = u, u = pre[u]) {
flow[u][v] += aug;
flow[v][u] -= aug;
}
aug = -1;
}
goto loop;
}
int mindis = nodenum - 1;
for (int v = 0; v < nodenum; v++)
if (maze[u][v] - flow[u][v] && mindis > dis[v]) {
cur[u] = v;
mindis = dis[v];
}
if ((--gap[dis[u]]) == 0) break;
gap[dis[u] = mindis + 1]++;
u = pre[u];
}
return maxflow;
}
int main() {
scanf("%d", &n);
for (int i = 1; i <= n; i++) {
cin >> s1;
ma[s1] = ++num; //边建边,边记录点数
maze[0][num] = 1;
}
scanf("%d", &m);
for (int i = 1; i <= m; i++) {
cin >> s1 >> s[i];
if (!ma[s[i]]) ma[s[i]] = ++num; //先存起来
}
scanf("%d", &k);
for (int i = 1; i <= k; i++) {
cin >> s1 >> s2;
if (!ma[s1]) ma[s1] = ++num;
if (!ma[s2]) ma[s2] = ++num;
maze[ma[s2]][ma[s1]] = inf; //无数个转换器
}
for (int i = 1; i <= m; i++) { //等点的数量确定后,再连汇点
maze[ma[s[i]]][num + 1]++;
}
printf("%d\n", m - sap(0, num + 1, num + 2));
return 0;
}