题意:给出一张图,要求最小顶点覆盖,即选出最少的点,让每条边都至少与一个选出的点关联。
题解:二分图匹配
根据输入建边,跑出的最大匹配 / 2就是答案,因为最大匹配就是选出没有公共点的最大边数,那么剩余边必然跟选出的关联(相邻)。
邻接矩阵会t,用vector建邻接表。
#define _CRT_SECURE_NO_WARNINGS
#include<iostream>
#include<cstdio>
#include<string>
#include<cstring>
#include<algorithm>
#include<queue>
#include<stack>
#include<cmath>
#include<vector>
#include<fstream>
#include<set>
#include<map>
#include<sstream>
#include<iomanip>
#define ll long long
using namespace std;
//顶点编号从 0 开始的
const int MAXN = 1510;
int uN, vN;//u,v 的数目,使用前面必须赋值
int linker[MAXN];
bool used[MAXN];
vector<int> g[MAXN];
bool dfs(int u) {
int temp = g[u].size();
for (int v = 0; v < temp; v++)
if (!used[g[u][v]]) {
used[g[u][v]] = true;
if (linker[g[u][v]] == -1 || dfs(linker[g[u][v]])) {
linker[g[u][v]] = u;
return true;
}
}
return false;
}
int hungary() {
int res = 0;
memset(linker, -1, sizeof(linker));
for (int u = 0; u < uN; u++) {
memset(used, false, sizeof(used));
if (dfs(u))res++;
}
return res;
}
int n, u, num, v;
int main() {
while (~scanf("%d", &n)) {
memset(g, 0, sizeof(g));
for (int i = 1; i <= n; i++) {
scanf("%d:(%d)", &u, &num);
for (int j = 1; j <= num; j++) {
scanf("%d", &v);
g[u].push_back(v);
g[v].push_back(u);
}
}
uN = n;
printf("%d\n", hungary() / 2);
}
return 0;
}