题意:给出n个矩形,求最终图形的总周长。
题解:扫描线+线段树+离散化
我们从下至上扫描,离散化横坐标。
我们每加一个边,累加边长的变化值,然后用线段树维护竖线的个数,具体见代码注释。
还有就是重边的情况,两个oj的数据里都没有重边的数据,我们只要对于在同一h的边排序的时候,将入边先排即可,这样就可以减去重边。
#define _CRT_SECURE_NO_WARNINGS
#include<iostream>
#include<cstdio>
#include<string>
#include<cstring>
#include<algorithm>
#include<queue>
#include<stack>
#include<cmath>
#include<vector>
#include<fstream>
#include<set>
#include<map>
#include<sstream>
#include<iomanip>
#define ll long long
using namespace std;
//扫描线 从下至上
const int MAXN = 1e4 + 5;
struct Seg {
int l, r, h; //入边、出边的左右横坐标,以及高度
int flag; //标记入边1 出边-1
Seg() {}
Seg(double a, double b, double c, int d) :l(a), r(b), h(c), flag(d) {}
bool operator < (const Seg& cmp) const {
return h == cmp.h ? flag > cmp.flag : h < cmp.h; //将入边放在出边前面
}
}e[MAXN];
struct node {
int cnt;
int len;
int add;
bool isl, isr;
} tree[MAXN << 2];
int X[MAXN];
void pushUp(int l, int r, int rt) {
if (tree[rt].add) { //当前的边被标记,就把当前的长度加上
tree[rt].len = X[r + 1] - X[l];
tree[rt].cnt = 1; //[l, r]被完全覆盖,此时由且只有2条竖线
tree[rt].isl = tree[rt].isr = 1;
}
else if (l == r) { //当为一个点的时候长度为0
tree[rt].len = 0;
tree[rt].cnt = 0; //l=r,此时是叶节点,为0
tree[rt].isl = tree[rt].isr = 0;
}
else { //其他情况把左右两个区间的值加上
tree[rt].len = tree[rt << 1].len + tree[rt << 1 | 1].len;
tree[rt].cnt = tree[rt << 1].cnt + tree[rt << 1 | 1].cnt;
tree[rt].isl = tree[rt << 1].isl;
tree[rt].isr = tree[rt << 1 | 1].isr;
if (tree[rt << 1].isr && tree[rt << 1 | 1].isl) tree[rt].cnt--; //[l, r]被覆盖部分,那么此区间的竖线条数是子区间竖线条数之和,但是当左子区间的右边与右区间的左边重叠时,父区间竖线条数要减少两条
}
}
void update(int L, int R, int l, int r, int rt, int val) {
if (L <= l && r <= R) {
tree[rt].add += val; //加上标记的值
pushUp(l, r, rt);
return;
}
int m = (l + r) >> 1;
if (L <= m) update(L, R, l, m, rt << 1, val);
if (R > m) update(L, R, m + 1, r, rt << 1 | 1, val);
pushUp(l, r, rt);
}
int n;
int xa, ya, xb, yb;
int main() {
while (~scanf("%d", &n)) {
memset(tree, 0, sizeof(tree));
int num = 0;
for (int i = 1; i <= n; i++) {
scanf("%d%d%d%d", &xa, &ya, &xb, &yb);
X[num] = xa;
e[num++] = Seg(xa, xb, ya, 1); //ya 入边
X[num] = xb;
e[num++] = Seg(xa, xb, yb, -1); //yb 出边
}
sort(X, X + num);
sort(e, e + num);
int len = unique(X, X + num) - X;
int ans = 0, pre = 0;
for (int i = 0; i < num; i++) {
int l = lower_bound(X, X + len, e[i].l) - X;
int r = lower_bound(X, X + len, e[i].r) - X;
update(l, r - 1, 0, len, 1, e[i].flag);
ans += abs(tree[1].len - pre) + 2 * tree[1].cnt * (e[i + 1].h - e[i].h);
pre = tree[1].len;
}
printf("%d\n", ans);
}
return 0;
}