题意:给出一张无向图,n个点,经过每个点时,都要按照当前点用左手或右手拿东西,用L、R、M(都可)表示,换一次手要x的时间,给出起点和终点,求最短时间。
题解:dijkstra+拆点
将每个点拆成两个,表示是这个点是左手还是右手拿的东西。
比如点u是L,那么我们只能从左手拿的这个点(u << 1 | 0)出发,如果是M,那么左手(0)或者右手(1)都可以。再建一个类似超级源点和汇点即可。
按照std的写了一遍,很清楚。
#define _CRT_SECURE_NO_WARNINGS
#include<iostream>
#include<cstdio>
#include<string>
#include<cstring>
#include<algorithm>
#include<queue>
#include<stack>
#include<cmath>
#include<vector>
#include<fstream>
#include<set>
#include<map>
#include<sstream>
#include<iomanip>
#define ll long long
using namespace std;
//dijkstra
const ll inf = 0x3f3f3f3f3f3f;
const int manx = 2e5 + 5; //与n相对,对应顶点的个数
const int mamx = 1e6 + 5; //与m相对,对应边的个数
priority_queue< pair<ll, int> >q;
struct node {
int next, v;
ll w;
}edge[mamx]; //边去mamx,其余取manx
bool vis[manx]; //这里的标记数组与spfa的vis数组含义不同,这里标记是否入过队列
int head[manx];
ll d[manx];
int k = 0;
int n, m, s, e; //s作为起点,e作为终点
void add(int u, int v, ll w) { //链式前向星存图
edge[++k].next = head[u];
edge[k].v = v;
edge[k].w = w;
head[u] = k;
}
char st[manx];
ll xx;
void dijkstra() {
for (int i = 0; i <= 2 * n + 1; i++) //初始化vis d 数组
d[i] = inf, vis[i] = 0;
d[s] = 0; //s作为起点
q.push(make_pair(0, s));
while (q.size()) {
int x = q.top().second; //取出队头
q.pop();
if (vis[x]) continue; //如果点x访问过,跳过,访问下一个队头
vis[x] = 1; //访问x做标记
for (int i = head[x]; i; i = edge[i].next) {
int v = edge[i].v;
ll w = edge[i].w;
if (d[v] > d[x] + w) { //松弛操作,更新距离
d[v] = d[x] + w;
q.push(make_pair(-d[v], v)); //把更新的距离和点入队,这里距离取负变成小根堆
}
}
}
}
int t, u, v;
ll w;
int main() {
scanf("%d", &t);
while (t--) {
k = 0;
memset(head, 0, sizeof(head));
scanf("%d%d%d%d%lld", &n, &m, &s, &e, &xx); s--; e--;
scanf("%s", st);
for (int i = 1; i <= m; i++) {
scanf("%d%d%lld", &u, &v, &w); u--; v--;
for (int j = 0; j <= 1; j++) {
if (j == 0 && st[u] == 'R' || j == 1 && st[u] == 'L') continue;
for (int k = 0; k <= 1; k++) {
if (k == 0 && st[v] == 'R' || k == 1 && st[v] == 'L') continue;
add(u << 1 | j, v << 1 | k, w + (j != k ? xx : 0));
add(v << 1 | k, u << 1 | j, w + (j != k ? xx : 0));
}
}
}
int S = 2 * n, T = 2 * n + 1;
for (int j = 0; j <= 1; j++) {
if (j == 0 && st[s] == 'R' || j == 1 && st[s] == 'L') continue;
add(S, s << 1 | j, 0);
add(s << 1 | j, S, 0);
}
for (int j = 0; j <= 1; j++) {
if (j == 0 && st[e] == 'R' || j == 1 && st[e] == 'L') continue;
add(e << 1 | j, T, 0);
add(T, e << 1 | j, 0);
}
s = S;
dijkstra();
printf("%lld\n", d[T]);
}
return 0;
}