深度学习之数学篇

本文介绍了线性代数中的向量、矩阵运算,包括加法、减法、数乘和转置,还提及了范数和特征值的概念。同时概述了高等数学中的导数、微分、积分以及梯度的定义。此外,简要提到了概率论的基础知识,如条件概率和期望值。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

线性代数

1、向量

在数学中,向量(也称为欧几里得向量、几何向量),指具有大小(magnitude)和方向的量。它可以形象化地表示为带箭头的线段。箭头所指:代表向量的方向;线段长度:代表向量的大小。与向量对应的量叫做数量(物理学中称标量),数量(或标量)只有大小,没有方向。
  一般印刷用黑体的小写英文字母(a、b、c等)来表示,手写用在a、b、c等字母上加一箭头(→)表示,也可以用大写字母AB、CD上加一箭头(→)等表示。
  向量的矩阵表示:
  在这里插入图片描述

2、向量运算

在这里插入图片描述

  • 加法
    在这里插入图片描述

  • 减法
    在这里插入图片描述

  • 数乘在这里插入图片描述

  • 数量积在这里插入图片描述

  • 向量积在这里插入图片描述
    在这里插入图片描述
    在这里插入图片描述

  • 三向量混合积
    在这里插入图片描述

3、矩阵

矩阵就是m*n个数排列成的m行n列的表格。
  由 m × n 个数aij排成的m行n列的数表称为m行n列的矩阵,简称m × n矩阵。记作:
在这里插入图片描述
  这m×n 个数称为矩阵A的元素,简称为元,数aij位于矩阵A的第i行第j列,称为矩阵A的(i,j)元,以数 aij为(i,j)元的矩阵可记为(aij)或(aij)m × n,m×n矩阵A也记作Amn
  元素是实数的矩阵称为实矩阵,元素是复数的矩阵称为复矩阵。而行数与列数都等于n的矩阵称为n阶矩阵或n阶方阵。

4、矩阵运算

矩阵的基本运算包括矩阵的加法,减法,数乘,转置。

  • 加法:
    在这里插入图片描述
      矩阵的加法满足下列运算律(A,B,C都是同型矩阵):
      应该注意的是只有同型矩阵之间才可以进行加法。

  • 减法:
    在这里插入图片描述

  • 数乘:
    在这里插入图片描述
      矩阵的数乘满足以下运算律:
    在这里插入图片描述
      矩阵的加减法和矩阵的数乘合称矩阵的线性运算。

  • 转置:
    在这里插入图片描述
      矩阵的转置满足以下运算律:
    在这里插入图片描述

5、范数

范数(norm)是数学中的一种基本概念。在泛函分析中,它定义在赋范线性空间中,并满足一定的条件,即①非负性;②齐次性;③三角不等式。它常常被用来度量某个向量空间(或矩阵)中的每个向量的长度或大小
  范数,是具有“长度”概念的函数。在线性代数、泛函分析及相关的数学领域,范数是一个函数,是矢量空间内的所有矢量赋予非零的正长度或大小。半范数可以为非零的矢量赋予零长度。

6、特征值和特征向量

特征值是指设是n阶方阵,如果存在数m和非零n维列向量,使得Ax=m成立,则称m是的一个特征值。非零n维列向量称为矩阵的属于(对应于)特征值m的特征向量,简称的特征向量。在这里插入图片描述

高数

1、导数在这里插入图片描述

  • 导函数在这里插入图片描述

  • 几何意义
      函数y=f(x)在x0点的导数f’(x0)的几何意义:表示函数曲线在点P0(x0,f(x0))处的切线的斜率(导数的几何意义是该函数曲线在这一点上的切线斜率)。

2、微分

  • 基本法则
    在这里插入图片描述

3、积分

积分是微积分学与数学分析里的一个核心概念。通常分为定积分和不定积分两种。直观地说,对于一个给定的正实值函数,在一个实数区间上的定积分可以理解为在坐标平面上,由曲线、直线以及轴围成的曲边梯形的面积值(一种确定的实数值)。在这里插入图片描述

4、梯度

梯度的本意是一个向量(矢量),表示某一函数在该点处的方向导数沿着该方向取得最大值,即函数在该点处沿着该方向(此梯度的方向)变化最快,变化率最大(为该梯度的模)。在这里插入图片描述

5、泰勒公式在这里插入图片描述

常用泰勒展开式:
在这里插入图片描述
在这里插入图片描述在这里插入图片描述

概率论

1、条件概率在这里插入图片描述

基本定理:
在这里插入图片描述在这里插入图片描述

2、期望

在概率论和统计学中,数学期望(mathematic expectation [4])(或均值,亦简称期望)是试验中每次可能结果的概率乘以其结果的总和,是最基本的数学特征之一。它反映随机变量平均取值的大小。

  • 离散型
    在这里插入图片描述

  • 连续型
    在这里插入图片描述

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值