线性代数
1、向量
在数学中,向量(也称为欧几里得向量、几何向量),指具有大小(magnitude)和方向的量。它可以形象化地表示为带箭头的线段。箭头所指:代表向量的方向;线段长度:代表向量的大小。与向量对应的量叫做数量(物理学中称标量),数量(或标量)只有大小,没有方向。
一般印刷用黑体的小写英文字母(a、b、c等)来表示,手写用在a、b、c等字母上加一箭头(→)表示,也可以用大写字母AB、CD上加一箭头(→)等表示。
向量的矩阵表示:
2、向量运算
-
加法
-
减法
-
数乘
-
数量积
-
向量积
-
三向量混合积
3、矩阵
矩阵就是m*n个数排列成的m行n列的表格。
由 m × n 个数aij排成的m行n列的数表称为m行n列的矩阵,简称m × n矩阵。记作:
这m×n 个数称为矩阵A的元素,简称为元,数aij位于矩阵A的第i行第j列,称为矩阵A的(i,j)元,以数 aij为(i,j)元的矩阵可记为(aij)或(aij)m × n,m×n矩阵A也记作Amn。
元素是实数的矩阵称为实矩阵,元素是复数的矩阵称为复矩阵。而行数与列数都等于n的矩阵称为n阶矩阵或n阶方阵。
4、矩阵运算
矩阵的基本运算包括矩阵的加法,减法,数乘,转置。
-
加法:
矩阵的加法满足下列运算律(A,B,C都是同型矩阵):
应该注意的是只有同型矩阵之间才可以进行加法。 -
减法:
-
数乘:
矩阵的数乘满足以下运算律:
矩阵的加减法和矩阵的数乘合称矩阵的线性运算。 -
转置:
矩阵的转置满足以下运算律:
5、范数
范数(norm)是数学中的一种基本概念。在泛函分析中,它定义在赋范线性空间中,并满足一定的条件,即①非负性;②齐次性;③三角不等式。它常常被用来度量某个向量空间(或矩阵)中的每个向量的长度或大小。
范数,是具有“长度”概念的函数。在线性代数、泛函分析及相关的数学领域,范数是一个函数,是矢量空间内的所有矢量赋予非零的正长度或大小。半范数可以为非零的矢量赋予零长度。
6、特征值和特征向量
特征值是指设A是n阶方阵,如果存在数m和非零n维列向量x,使得Ax=mx成立,则称m是A的一个特征值。非零n维列向量x称为矩阵A的属于(对应于)特征值m的特征向量,简称A的特征向量。
高数
1、导数
-
导函数
-
几何意义
函数y=f(x)在x0点的导数f’(x0)的几何意义:表示函数曲线在点P0(x0,f(x0))处的切线的斜率(导数的几何意义是该函数曲线在这一点上的切线斜率)。
2、微分
- 基本法则
3、积分
积分是微积分学与数学分析里的一个核心概念。通常分为定积分和不定积分两种。直观地说,对于一个给定的正实值函数,在一个实数区间上的定积分可以理解为在坐标平面上,由曲线、直线以及轴围成的曲边梯形的面积值(一种确定的实数值)。
4、梯度
梯度的本意是一个向量(矢量),表示某一函数在该点处的方向导数沿着该方向取得最大值,即函数在该点处沿着该方向(此梯度的方向)变化最快,变化率最大(为该梯度的模)。
5、泰勒公式
常用泰勒展开式:
概率论
1、条件概率
基本定理:
2、期望
在概率论和统计学中,数学期望(mathematic expectation [4])(或均值,亦简称期望)是试验中每次可能结果的概率乘以其结果的总和,是最基本的数学特征之一。它反映随机变量平均取值的大小。
-
离散型
-
连续型