搜索求解(一)——启发式算法


基于 慕课->浙江大学 -> 人工智能:模型与算法 -> 第二章 搜索求解

**搜索指的是:**从海量信息源中,利用约束条件及额外信息来求出问题所对应的答案
在这里插入图片描述
一、启发式算法(个人感觉,学过数据结构来看这个会更简单)
以搜寻最短路径问题为例
在这里插入图片描述
问题:求 A->O 的一条最短路径
辅助信息为:
在这里插入图片描述

基于本问题解释几个定义:

1.状态:求 A->0 的一条最短路径 此为初始状态
2.动作:从 A 走到 B
3.状态转移:走到 B 此时的状态
4.路径: A->O 所能走的路
5.目标测试:当前求解状态,是否拿到最优

启发式算法又称有信息搜索,需要有与所求问题相关的辅助信息

评价函数 f(n)用于选择后续节点
启发函数h(n)从当前节点与目标节点所形成路径的最小值

算法一:贪婪优先算法( Greedy best-first search )

其评价函数 = 启发函数 [ f(n) = h(n) ]

过程如图:

在这里插入图片描述
在这里插入图片描述


不足之处:
1) 不完备,可能随着一条路走到头,不回来做其他尝试, 不一定是最优的
2)时间复杂度与空间复杂度为
  O ( b m ) \ O(b^{m})  O(bm)

算法二:A* 算法

在这里插入图片描述
要求:h(n)——可容的(不会因过高的估计从节点n到目标节点之间的实际开销代价,即 <= 实际开销)、单调的

过程如图:
在这里插入图片描述

在这里插入图片描述

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
理论部分完成,相应代码待续。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值