- 博客(8)
- 收藏
- 关注
原创 基于群体智能的军事应用
粒子群算法是美国普渡大学的Kennedy和Eberhart受到他们早期对鸟类群体行为研究结果的启发,于1995年在IEEE International Conference on Neural Networks国际会议上提出一种仿生优化算法,其灵感来源于鸟群或鱼群等群体的社会行为。粒子群算法的基本原理是模拟鸟群觅食的过程,其中每个“粒子”代表问题的一个候选解,粒子包含两个主要属性,分别是速度向量和位置向量。速度向量用于控制粒子在解空间中的移动,位置向量表示粒子的当前位置。
2024-08-14 21:56:59 652
原创 基于进化算法的军事应用
遗传算法是1975年由霍兰教授提出。它是模拟达尔文的遗传选择和自然淘汰的生物进化过程的计算模型,其目的:一是抽取和解释自然系统的自适应过程;二是设计具有自然系统机制机理的人工系统。遗传算法的基本思想是借鉴生物进化的规律,通过繁殖-竞争-再繁殖-再竞争实现优胜劣汰,使得问题一步步逼近最优解。也就是仿照生物进化过程,按照“优胜劣汰”的自然选择优化的规律和方法,来解决科学研究、工程技术等领域用传统的优化方法难以解决的优化问题。
2024-08-14 21:47:33 770
原创 启发式算法原理介绍
A搜索算法是由著名的人工智能学者Nilsson提出的,它是目前最有影响的启发式搜索算法,也称为最佳图搜索算法。主要用于在图或网格中找到从起点到终点的最短路径。它结合了最佳优先搜索和Dijkstra算法的优点,通过评价函数fngnhnfngnhn来选择路径。显然:(1)如果只有gngn起作用,则 A搜索算法退化为Dijkstra 算法;(2)如果hnhn远大于gngn,则只有hnhn。
2024-08-14 21:39:12 1061
原创 Macbook Pro 外接显卡实现Tensorflow GPU运行之TensorflowGPU配置
Macbook Pro 外接显卡实现Tensorflow GPU运行MacOS 重装外接显卡(内屏输出)环境配置(重点)Tensorflow GPU 配置Tensorflow GPU配置准备工作硬件准备:外接显卡,外界显示器/显卡欺骗器环境/软件准备:相关驱动和环境编译工具一定要确保编译成功哦!以笔者为例:资源版本号MacOS10.13. 6(17G65)GPU driverNIVIDIA Web Driver 387.10.10.40.105
2020-05-31 12:04:59 1072
原创 Macbook Pro 外接显卡实现Tensorflow GPU运行之环境配置(重点)
Macbook Pro 外接显卡实现Tensorflow GPU运行MacOS 重装外接显卡(内屏输出)环境配置(重点)Tensorflow GPU 配置环境配置准备工作显卡:GTX 1080TI 11G显卡坞:Mantiz (技嘉的Gamingbox应该也可以)显卡欺骗器(有条件的配个外屏吧,毕竟外屏转内屏输出损耗还是挺大的)MacOS:雷电3接口安装步骤macOS 系统安装(见blog1)CUDA配置cuDNN配置Tensorflow配置(见blog4)C
2020-05-31 12:01:55 2430
原创 Macbook Pro 外接显卡实现Tensorflow GPU运行之内屏输出
Macbook Pro 外接显卡实现Tensorflow GPU运行MacOS 重装外接显卡(内屏输出)环境配置Tensorflow GPU 配置外接显卡(外屏转内屏输出)本文主要参考翻译自:https://egpu.io/how-to-egpu-accelerated-internal-display-macos/准备工作硬件:显卡坞+显卡+电源显卡欺骗器(插在显卡坞上)软件:SpectacleDisableMonitorautomate-eGPU.s
2020-05-31 11:55:41 2422
原创 Macbook Pro 外接显卡实现Tensorflow GPU运行之MacOS系统重装
Macbook Pro 外接显卡实现Tensorflow GPU运行MacOS 重装外接显卡(外屏转内屏输出)环境配置Tensorflow GPU 配置MacOS重装重装系统主要参考https://jingyan.baidu.com/article/19020a0a40b3a5529d284293.html注意:MacOS的版本也有多个子版本,切勿从app store直接获取。先去查看下Navida可以对应到的一系列版本,再决定要下载安装的OS,CUDA,CUDNN,Xcode等。
2020-05-31 11:51:26 1065
原创 浅谈L1 与L2 正则项
浅谈L1 与L2 正则项1 从范数开始吧1.1 范数是什么1.2 范数的性质1.3 常用的几组范数2 机器学习角度2.1 损失函数2.2 最优化问题2.3 范数与机器学习的联系3. L1与L2的对比3.1 分析3.2 对比总结参考资料1 从范数开始吧1.1 范数是什么范数:一种具有抽象长度概念的函数,被用来度量某个向量空间(或矩阵)中每个向量的长度或大小。1.2 范数的性质通常意义上,范数具有以下三种基本性质:非负性:∣∣x∣∣≥0,且∣∣x∣∣=0 ⟺ x=0||x||\ge0,且|
2020-05-31 09:07:54 444
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人