题目描述
有108个村庄排在一条公路上,依次编号为0~108-1,相邻村庄距离为1,其中有n个村庄居住着牛牛,居住着牛牛的村庄从小到大依次为a0~an-1,其中保证a0=0.
现在需要建设车站,有两个要求必须被满足:
1、每个有牛牛居住的村庄必须修建车站。
2、相邻车站的距离必须为1或为某个质数。
现给出n和a数组,求需要建设车站的最小数量。
示例 1
3,[0,7,11]
输出
4
说明
在0,7,8,11处建造车站,差值分别为7,1,3,符合要求
编程思想:
根据题意可知,
最少建造数量:为n 即每个车站间隔都符合要求,则每次都需要在n的基础上进行累加即可;
间隔要求:判断 if 素数或者为1;
补充知识点:
将一个非质数表示为最少的质数和,分情况讨论:
1、当该非质数为偶数时,可以表示为两个质数的和(根据哥德巴赫猜想);
2、当该非质数为奇数时,分解为p=(p-2)+2:
若p-2为质数,则可表示为两个质数的和;
若p-2为非质数,则可表示为三个质数的和。
当遇到不是质数的情况是,只需要判断是否是偶数或者奇数-2是否是质数即可;
代码示例:
#include<iostream>
#include<string>
#include<math.h>
using namespace std;
class Sulotion
{
public:
//判断是否是质数
bool prime(int n)
{
// n = 1必须建造不需要判断返回false即可
if (n ==1)
{
return false;
}
// 判断是否是质数/素数 循环开始如果只有1 和本身取0则返回true
for (int i = 2; i< n ; i++)
{
if (n%i == 0)
{
return false;
}
}
return true;
}
// n 表示必须建造的车站数 如果大于1 且不是素数就要进行判断了
// 根据定理 偶数可以查分为俩个素数相加,奇数p则需要判断(p-2)是否是素数,如果不是就需要在拆分一次就
// 即偶数1 奇数p-2是则为 1 不是则为 2
int work(int n,int *a,int alen)
{
int count = n;// 最少建造n座车站
for (int i = 1; i < aLen; i++)
{
int dist = a[i] -a[i-1];//获取距离
if(dist !=1&& !prime(dist))//非质数
{
// 偶数或者奇数-2是质数则加+1 否则+2 座车站
if (dist % 2 ==0 || prime(dist -2 ))
count +=1;
else
count +=2;
}
}
return count; // 返回车站数
}
};