回溯法解排队购物问题(C++)

该博客介绍了一个关于排队购买商品的数学问题,其中一半人持1元,另一半持0.5元,售货员无零钱。通过C++实现的回溯算法展示了所有可能的排队方案,确保售货员不会面临找零问题。代码展示了一种有效解决此类问题的方法。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

一、问题描述

2n 个人排队购买一件价格为 0.5 元的商品,其中一半人拿一张 1 元人民币,另一半人拿一张 0.5 元的人民币。售货员在开始时没有准备零钱,要求找出所有排队的方案,使得售货员在售货中不发生找零困难。


二、题解

#include <iostream>
#include <vector>

using namespace std;

class Solution
{
private:
    vector<vector<int>> result;  // 结果集
    int five_count = 0;  // 队列中拿着0.5元的人数计数器
    int one_count = 0;  // 队列中拿着1元的人数计数器

public:
    vector<vector<int>> queueShop(int n) {
        vector<int> each_case;

        backtracking(each_case, n);
        
        return result;
    }

    void backtracking(vector<int> &each_case, int n) {
        if (each_case.size() == 2 * n) {
            result.emplace_back(each_case);
            return;
        }

		/* 只要0.5的数目没达到一半,就继续添加0.5 */
        if (five_count < n) {
            each_case.emplace_back(5);
            five_count++;
            backtracking(each_case, n);
            each_case.pop_back();
            five_count--;
        }

        /* 只有当前队列中0.5的数目多于1时才考虑加入1 */
        if (one_count < n && five_count > one_count) {
            each_case.emplace_back(1);
            one_count++;
            backtracking(each_case, n);
            each_case.pop_back();
            one_count--;
        }
    }
};

int main(int argc, char *argv[]) {
    Solution solution;

    auto res = solution.queueShop(5);

    for (const auto &i : res) {
        for (const auto &j : i) {
            cout << j << " ";
        }
        cout << endl;
    }
}

三、运行结果

atreus@MacBook-Pro % clang++ main.cpp -o main -std=c++11
atreus@MacBook-Pro % ./main                             
5 5 5 5 5 1 1 1 1 1 
5 5 5 5 1 5 1 1 1 1 
5 5 5 5 1 1 5 1 1 1 
5 5 5 5 1 1 1 5 1 1 
5 5 5 5 1 1 1 1 5 1 
5 5 5 1 5 5 1 1 1 1 
5 5 5 1 5 1 5 1 1 1 
5 5 5 1 5 1 1 5 1 1 
5 5 5 1 5 1 1 1 5 1 
5 5 5 1 1 5 5 1 1 1 
5 5 5 1 1 5 1 5 1 1 
5 5 5 1 1 5 1 1 5 1 
5 5 5 1 1 1 5 5 1 1 
5 5 5 1 1 1 5 1 5 1 
5 5 1 5 5 5 1 1 1 1 
5 5 1 5 5 1 5 1 1 1 
5 5 1 5 5 1 1 5 1 1 
5 5 1 5 5 1 1 1 5 1 
5 5 1 5 1 5 5 1 1 1 
5 5 1 5 1 5 1 5 1 1 
5 5 1 5 1 5 1 1 5 1 
5 5 1 5 1 1 5 5 1 1 
5 5 1 5 1 1 5 1 5 1 
5 5 1 1 5 5 5 1 1 1 
5 5 1 1 5 5 1 5 1 1 
5 5 1 1 5 5 1 1 5 1 
5 5 1 1 5 1 5 5 1 1 
5 5 1 1 5 1 5 1 5 1 
5 1 5 5 5 5 1 1 1 1 
5 1 5 5 5 1 5 1 1 1 
5 1 5 5 5 1 1 5 1 1 
5 1 5 5 5 1 1 1 5 1 
5 1 5 5 1 5 5 1 1 1 
5 1 5 5 1 5 1 5 1 1 
5 1 5 5 1 5 1 1 5 1 
5 1 5 5 1 1 5 5 1 1 
5 1 5 5 1 1 5 1 5 1 
5 1 5 1 5 5 5 1 1 1 
5 1 5 1 5 5 1 5 1 1 
5 1 5 1 5 5 1 1 5 1 
5 1 5 1 5 1 5 5 1 1 
5 1 5 1 5 1 5 1 5 1 
atreus@MacBook-Pro % 

在这里插入图片描述

好的,排队购物问题可以用回溯法。具体思路如下: 1. 定义状态:每个状态包括当前的时间、已经排队的顾客、还未排队的顾客。 2. 定义决策:决策包括将一个顾客加入队列和不加入队列两种。 3. 定义剪枝条件:如果已经排队的顾客的总等待时间已经超过了最小等待时间,则停止搜索。 4. 定义目标状态:所有顾客都已排队。 5. 实现回溯搜索算法,每次选择一个未排队的顾客加入队列,并更新状态,直到达到目标状态或剪枝条件。 下面是一个简单的 Python 实现: ```python def backtrack(current_time, queue, remaining_customers, min_wait_time, best_queue): if sum(queue.values()) * current_time >= min_wait_time: return if not remaining_customers: if sum(queue.values()) < sum(best_queue.values()): best_queue.clear() best_queue.update(queue) return customer = remaining_customers[0] remaining_customers = remaining_customers[1:] # 不加入队列 backtrack(current_time, queue, remaining_customers, min_wait_time, best_queue) # 加入队列 queue[customer] = customer backtrack(current_time + customer, queue, remaining_customers, min_wait_time, best_queue) del queue[customer] def shopping_queue(customers, min_wait_time): queue = {} best_queue = {} backtrack(0, queue, customers, min_wait_time, best_queue) return list(best_queue.keys()) ``` 其中,`customers` 是一个列表,表示每个顾客的购物时间;`min_wait_time` 是最小等待时间。函数返回的是最优队列中的顾客列表。
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值