力扣 695. 岛屿的最大面积

一、题目描述

给你一个大小为 m x n 的二进制矩阵 grid

岛屿是由一些相邻的 1(代表土地)构成的组合,这里的相邻要求两个 1 必须在水平或者竖直的四个方向上相邻。你可以假设 grid 的四个边缘都被 0(代表水)包围着。

岛屿的面积是岛上值为 1 的单元格的数目。

计算并返回 grid 中最大的岛屿面积。如果没有岛屿,则返回面积为 0

在这里插入图片描述

输入:grid = [[0,0,1,0,0,0,0,1,0,0,0,0,0],[0,0,0,0,0,0,0,1,1,1,0,0,0],[0,1,1,0,1,0,0,0,0,0,0,0,0],[0,1,0,0,1,1,0,0,1,0,1,0,0],[0,1,0,0,1,1,0,0,1,1,1,0,0],[0,0,0,0,0,0,0,0,0,0,1,0,0],[0,0,0,0,0,0,0,1,1,1,0,0,0],[0,0,0,0,0,0,0,1,1,0,0,0,0]]
输出:6
解释:答案不应该是 11 ,因为岛屿只能包含水平或垂直这四个方向上的 1 。
示例 2:

输入:grid = [[0,0,0,0,0,0,0,0]]
输出:0

二、题解

通过回溯法处理,时间复杂度和空间复杂度均为 O ( m × n ) O(m \times n) O(m×n)

class Solution {
private:
    int max_area = 0;
    int cur_area = 0;
    int m, n;

public:
    int maxAreaOfIsland(vector<vector<int>> &grid) {
        /* 获取网格的长和宽 */
        m = grid.size();
        n = grid.at(0).size();

        /* 从左到右,从上到下遍历,因为每个访问过的节点都会被置0,所以不用担心重复的问题。 */
        for (int i = 0; i < m; i++) {
            for (int j = 0; j < n; j++) {
                backtracking(grid, i, j);
                max_area = max(max_area, cur_area);
                cur_area = 0;  // 每个岛屿处理完要将cur_area置0
            }
        }
        
        /* 返回最大面积 */
        return max_area;
    }

    void backtracking(vector<vector<int>> &grid, int row, int col) {
        /* 越界检查 */
        if (row < 0 || row >= m || col < 0 || col >= n) {
            return;
        }

        /* 处理土地节点 */
        if (grid.at(row).at(col)) {
            grid.at(row).at(col) = 0;
            cur_area++;

            /* 处理相邻的节点 */
            backtracking(grid, row, col + 1);
            backtracking(grid, row, col - 1);
            backtracking(grid, row + 1, col);
            backtracking(grid, row - 1, col);
        }
    }
};

在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值