算法笔记_动态规划:最长上升子序列

题目链接:http://codeup.cn/problem.php?cid=100000627&pid=0
题目描述
一个数列ai如果满足条件a1 < a2 < … < aN,那么它是一个有序的上升数列。我们取数列(a1, a2, …, aN)的任一子序列(ai1, ai2, …, aiK)使得1 <= i1 < i2 < … < iK <= N。例如,数列(1, 7, 3, 5, 9, 4, 8)的有序上升子序列,像(1, 7), (3, 4, 8)和许多其他的子序列。在所有的子序列中,最长的上升子序列的长度是4,如(1, 3, 5, 8)。

现在你要写一个程序,从给出的数列中找到它的最长上升子序列。

输入
输入包含两行,第一行只有一个整数N(1 <= N <= 1000),表示数列的长度。

第二行有N个自然数ai,0 <= ai <= 10000,两个数之间用空格隔开。

输出
输出只有一行,包含一个整数,表示最长上升子序列的长度。

样例输入
7
1 7 3 5 9 4 8
样例输出
4

#include <iostream>
#include <cstring>
using namespace std;

const int MAXN = 1005;
int n, a[MAXN], dp[MAXN];

int main() {
    while (cin >> n) {
        for (int i = 0; i < n; i++) {
            cin >> a[i];
            dp[i] = 1;
        }
        for (int i = 1; i < n; i++){
            for (int j = 0; j < i; j++){
                if (a[j] < a[i] && dp[j] + 1 > dp[i]) {
                    dp[i] = dp[j] + 1;
                }
            }
        }
        int u = 0;
        for (int i = 1; i < n; i++) {
            if (dp[u] < dp[i]) u = i;
        }
        cout << dp[u] << endl;
    }
    return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值