【算法学习笔记】动态规划_最长上升子序列

该博客介绍了如何使用动态规划求解给定序列中最长上升子序列的长度问题。通过状态设计DP[i]表示以序列中第i个元素结尾的最长上升子序列的长度,并给出状态转移方程DP[i] = max{DP[j] + 1} (1 <= j < i, A[j] < A[i]),以及边界条件DP[i] = 1。最终通过遍历序列计算得出最长上升子序列的长度,时间复杂度为O(n^2)。" 44593509,1086555,2015搜狐实习笔试编程题解析,"['实习经验', '编程挑战', '笔试准备', '互联网公司', '技术面试']
摘要由CSDN通过智能技术生成

描述

一个数的序列bi,当b1 < b2 < ... < bS的时候,我们称这个序列是上升的。对于给定的一个序列(a1a2, ..., aN),我们可以得到一些上升的子序列(ai1ai2, ..., aiK),这里1 <= i1 < i2 < ... < iK <= N。比如,对于序列(1, 7, 3, 5, 9, 4, 8),有它的一些上升子序列,如(1, 7), (3, 4, 8)等等。这些子序列中最长的长度是4,比如子序列(1, 3, 5, 8)。

你的任务,就是对于给定的序列,求出最长上升子序列的长度。

输入

输入的第一行是序列的长度N (1 <= N <= 1000)。第二行给出序列中的N个整数,这些整数的取值范围都在0到10000。

输出

最长上升子序列的长度。

样例输入

7
1 7 3 5 9 4 8

样例输出

4

 

思路:

用数组a[i]保存输入序列,用数组dp[i]记录以a[i]结尾的最长上升子序列的长度。

显然dp[0]=1.(实际上初始化时所有的dp都要为1)

若已知dp[i-1],如何求dp[i]呢?

方法是:从a[0]开始,到a[k-1]&#x

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值