题目描述
古人云:“不谋万世者,不足谋一时;不谋全局者,不足谋一域。”张琪曼通过研究惊奇地发现,每个人一生的幸福指数可以用一个长度为n的十进制数字字符串来表示,并且可以通过全局统筹安排,将幸福指数分成k+1个部分应用在她感兴趣的不同领域,从而使得总体幸福值最强,所谓幸福值最强,是指使得k个部分的乘积为最大。例如n=6,k=3,且数字字符串为“310143”时,此时可能有的情况有下列各种:
3×1×0×143=0
3×1×01×43=129
3×1×014×3=126
3×10×1×43=1290
3×10×14×3=1260
3×101×4×3=3630
31×0×1×43=0
31×01×4×3=372
310×1×4×3=3720
从上面的结果可以看出,最大乘积为310×1×4×3=3720。
现在的问题时,当n,数字串和k给出之后,找出一种分法使其乘积为最大。
输入
第一行为两个整数,即n和k, 6≤n≤40,1≤k≤6
第二行为数字字符串。
输出
一个整数,即最大乘积。
样例输入 Copy
6 3
310143
样例输出 Copy
3720
解析:
预处理字符数字转换成整数
设f[i][j]:第i个数插入了j个乘号。
第一个循环 :控制乘号的个数
第二个循环:控制区间
第三个循环:枚举子区间。区间dp一定从小区间往大区间递推
状态方程:
f[l][i]=max(f[l][i],f[k][i-1]*sum[k+1][l]);
小区间 f[k][i-1] 有i-1个乘号 因为枚举的是i个乘号,所以还要再乘上sum[k+1][l]这部分
#include<bits/stdc++.h>
using namespace std;
const int N=1100;
typedef long long ll;
ll f[N][N];
ll sum[N][N];
int n,m;
char s[N];
int main()
{
cin>>n>>m;
cin>>(s+1);
for(int i=1;i<=n;i++)
{
sum[i][i]=s[i]-'0';
for(int j=i+1;j<=n;j++)
sum[i][j]=sum[i][j-1]*10+s[j]-'0';
}
for(int i=1;i<=n;i++) f[i][0]=sum[1][i];
for(int i=1;i<=m;i++)
for(int l=1;l<=n;l++)
for(int k=1;k<l;k++)
f[l][i]=max(f[l][i],f[k][i-1]*sum[k+1][l]);
cout<<f[n][m]<<endl;
}