Nim游戏---------------------------------------数论(博弈论)

给定n堆石子,两位玩家轮流操作,每次操作可以从任意一堆石子中拿走任意数量的石子(可以拿完,但不能不拿),最后无法进行操作的人视为失败。

问如果两人都采用最优策略,先手是否必胜。

输入格式
第一行包含整数n。

第二行包含n个数字,其中第 i 个数字表示第 i 堆石子的数量。

输出格式
如果先手方必胜,则输出“Yes”。

否则,输出“No”。

数据范围
1≤n≤105,
1≤每堆石子数≤109
输入样例:
2
2 3
输出样例:
Yes

a1^a2^a3^...an=0 先手必败
a1^a2^a3^...an!=0 先手必胜

#include<bits/stdc++.h>
using namespace std;
int n,x;
int main()
{
    int res=0;
    cin>>n;
    while(n--)
    {
        cin>>x;
        res^=x;
    }
    if(res==0) cout<<"No"<<endl;
    else cout<<"Yes"<<endl;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值