题意:
给定n个数,两两互减取绝对值,一共有n*(n-1)/2个数,问中间值是多少
解析:
二分答案d
先给原序列排序,然后根据公式a[j]-a[i]<=d (j>=i)
那么a[j]<=a[i]+d
所以我们二分一下a[i]+d 在整个序列的位置,因为(j>=i) 所以还要减去<a[i]的数
#include<iostream>
#include<algorithm>
#include<cstdio>
using namespace std;
const int N=1e6+1000;
typedef long long ll;
int a[N];
int n;
int k;
bool check(int x)
{
int ans=0;
for(int i=1;i<=n;i++)
{
int pos=lower_bound(a+1,a+1+n,a[i]+x)-(a+1);
ans+=pos-i;
}
if(ans<k) return true;
return false;
}
int main()
{
while(~scanf("%d",&n))
{
k=(n*(n-1)/2+1)/2;
for(int i=1;i<=n;i++) scanf("%d",&a[i]);
sort(a+1,a+1+n);
int l=1,r=1e9;
int ans=0;
while(l<=r)
{
int mid=l+r>>1;
if(check(mid)) l=mid+1,ans=mid;
else r=mid-1;
}
printf("%d\n",ans);
}
}