论文阅读【Multimodal Disentangled Domain Adaption for Social Media Event Rumor Detection】

本文针对社交媒体事件谣言检测的挑战,提出了多模态解纠缠域自适应(MDDA)方法。MDDA通过多模态解纠缠表示学习分离内容和风格特征,并使用无监督领域自适应去除事件特定特征,以实现无标记数据下新兴事件的谣言检测。实验表明,MDDA在Twitter基准数据集上表现出优越性能。
摘要由CSDN通过智能技术生成

谣言检测存在的两大挑战

①纠缠挑战:在现实的社交媒体平台上,谣言总是与具体内容纠缠在一起。同一事件,谣言间的差异也很大。忽略了内容与风格之间的联系。
②领域挑战:已有的事件训练的模型对新发生的事件指导性效果不大(没有标签)。

社交媒体事件谣言检测任务旨在检测没有标记数据的新兴社交媒体事件的谣言。

结论

本文研究了社交媒体平台所面临的现实谣言检测场景:社交媒体事件谣言检测,目的是在没有标记数据的情况下,对新兴的社交媒体事件进行谣言检测。 针对社交媒体事件谣言检测的挑战,提出了一种新的多模态解纠缠域自适应(MDDA)方法。 它由两个主要部分组成:多模态解纠缠表征学习和无监督域自适应。 多模态解纠缠表示学习负责将多媒体帖子分解为事件内容信息和谣言写作风格信息。 无监督领域自适应是去除事件特有的特征,保持事件之间共享的谣言风格特征。 在两个Twitter基准数据集上进行的大量实验表明,我们的谣言检测方法比现有的方法取得了更好的结果。

初始化定义

训练 D S = { p i , y i } i = 1 N S D_{S}=\left \{p^i,y^i \right \}_{i=1}^{N_{S}} DS={ pi,yi}i=1NS

S为事件
N S N^S NS为此事件的帖子数量
p i p^i pi,事件下的一个帖子,由 x i x^i xi v i v^i vi文本和图片共同组成
y i ∈ ( 0 , 1 ) y^i\in\left (0,1\right ) yi(0,1),此帖子的标签

实验 D T = { p i , y i } i = 1 N T D_{T}=\left \{p^i,y^i \right \}_{i=1}^{N_{T}} DT={ pi,yi}i=1NT

T为要检测的新事件
N T N^T NT为此事件的帖子数量

方法

模型组成

①多模态解纠缠表示学习

删除统一事件,不用帖子的不同特征,保留分析不变内容的谣言风格特征。

②无监督领域的适应

采用对抗性神经网络学习的领域自适应,从多媒体帖子中学习可转移的特征。基于谣言风格特征,训练检测器。

多模态解纠缠表示学习

表现不佳的原因是,每个帖子都有自己的内容,如果都要参考的话,那么对于训练出来的数据模型,表现都不会好。
所以这个结构的主要作用就是将内容和风格分割出来,用风格进行训练。针对文本和图片要进行分别解纠缠。

①文本解纠缠表示学习

变分自动编码器作为基本模型。三种特殊的编码器。
第一个是普通的编码器 E X b E_{X}^{b} EXb,学习文本的潜在分布
第二个是内容编码器 E X c E_{X}^{c} EXc,学习文本内容
第三个是风格样式编码器 E X S E_{X}^{S} EXS,学习谣言写作风格。

疑难杂症

①RNN、LSTM、GRU

零基础上手RNN、LSTM

模型结构

模型结构图
所提出的多模态解纠缠域自适应(MDDA)方法的说明。MDDA首先执行多模态解纠缠表示学习,将多媒体表示帖子分离为内容特征和风格特征,并删除特定于内容的特征进行训练。如果没有对内容信息的干扰,仅从风格特征中训练出来的谣言分类器就会更加精确和健壮。
然后采用基于对抗性学习的领域自适应来处理不同事件上的风格表示分布漂移。通过这种方式,MDDA可以处理社交媒体事件的谣言检测任务,并在新出现的事件中持续表现良好。
红线是推理管道。一旦模型被训练,目标数据可以直接输入样式编码器和标签预测器,以得到标签预测。

问题1:什么叫Down Sampling?(待完善)

降采样

问题2:什么叫Residual Blocks?(待完善)

防止梯度出现问题,可以跳过中间的,直接退回。

问题3:什么叫多层感知机?(待完善)

人工神经网络,输入层、隐藏层、输出层。

模型解读

模型同时具备对文本图像的处理能力,并且最终输出二者缺一不可。

①对文本
普通编码器

h n = E X b ( x ; θ E x b ) = G R U ( x n , h n − 1 ) h_n=\mathbf{E} _X^b(x;\theta_{\mathbf{E_x^b}})=GRU(x_n,h_{n-1}) hn=EXb(x;θExb)=GRU(xn,hn1)
其中, θ E x b \theta_{\mathbf{E}_x^b} θExb为这个模块网络的参数 h n h_{n} hn为第n步的隐含状态

内容编码器

[ μ c , log ⁡ σ c 2 ] = E X c ( h n ; θ E x c ) = M L P c o n t e n t ( h n ) [\mu_c,\log \sigma_c^2]=\mathbf{E}_X^c(h_n;\mathbf\theta_{\mathbf{E}_x^c})=MLP_{content}(h_n) [μc,logσc2]=EXc(hn;θExc)=MLPcontent(hn)

风格编码器

[ μ s , log ⁡ σ s 2 ] = E X s ( h n ; θ E x s ) = M L P s t y l e ( h n ) [\mu_s,\log \sigma_s^2]=\mathbf{E}_X^s(h_n;\mathbf\theta_{\mathbf{E}_x^s})=MLP_{style}(h_n) [μs,logσs2]=EXs(hn;θExs)=MLPstyle(hn)

其中 μ \mu μ σ \sigma σ分别为期望和方差

抽取

分别从内容编码器和风格编码器的输出中抽取变量
内容 x c x_c xc
x c ∼ N ( μ c , σ c 2 I ) x_c \thicksim \mathcal{N}(\mu_c,\sigma^2_c\mathbf{I}) xcN(μc,σc2I)
风格 x s x_s xs
x s ∼ N ( μ s , σ

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值