蓝桥杯 试题 基础练习 杨辉三角形(JAVA)

问题描述
杨辉三角形又称Pascal三角形,它的第i+1行是(a+b)i的展开式的系数。

它的一个重要性质是:三角形中的每个数字等于它两肩上的数字相加。

下面给出了杨辉三角形的前4行:

1

1 1

1 2 1

1 3 3 1

给出n,输出它的前n行。

输入格式
输入包含一个数n。

输出格式
输出杨辉三角形的前n行。每一行从这一行的第一个数开始依次输出,中间使用一个空格分隔。请不要在前面输出多余的空格。

样例输入
4
样例输出
1
1 1
1 2 1
1 3 3 1
数据规模与约定
1 <= n <= 34。

题解
关于杨辉三角形,我们需要知道的:

  1. 第n行有n个数字;
  2. 每一行的开始和结尾数字都为1;
    用二维数组表示就是a[i][0]=1(开始处j == 0);; a[i][j]=1(结尾处i == j);
  3. 第n+1行的第i个数字等于第n行的i-1个数字加上第n行的i个数字。
    用二维数组表示就是 a[i+1][j]=a[i][j-1]+a[i][j]

首先我们需要创建一个和杨辉三角形状一样的二维数组,然后再进行赋值和输出操作。

//创建和杨辉三角形状一样的二维数组
Scanner scanner=new Scanner(System.in);
int n=scanner.nextInt();

int[][] arr=new int[n][];
for(int i=0;i<n;i++) {
	arr[i]=new int[i+1];
}

然后在通过两层循环,对杨辉三角形进行赋值操作。这里需要注意每一行的开始和结尾数字都为1。

for(int i=0;i<arr.length;i++) {		
	for(int j=0;j<arr[i].length;j++) {
		if(j==0 || i==j) {//每一行的开始和结尾数字都为1
			arr[i][j]=1;
		}else {
			arr[i][j]=arr[i-1][j]+arr[i-1][j-1];
		}
	}
}

以上两点就是本题的核心之处,完整题解代码如下:

import java.util.Scanner;
//输出n行杨辉三角形
public class YanghuiTriangle {
	public static void main(String[] args) {
		Scanner scanner=new Scanner(System.in);
		int n=scanner.nextInt();
		
		int[][] arr=new int[n][];
		for(int i=0;i<n;i++) {
			arr[i]=new int[i+1];
		}
		
		for(int i=0;i<arr.length;i++) {		
			for(int j=0;j<arr[i].length;j++) {
				if(j==0 || i==j) {
					arr[i][j]=1;
				}else {
					arr[i][j]=arr[i-1][j]+arr[i-1][j-1];
				}
			}
		}
		
		for(int i=0;i<arr.length;i++) {		
			for(int j=0;j<arr[i].length;j++) {
				System.out.print(arr[i][j]+"\t");
			}
			System.out.println();
		}
		
	}

}

如果想要了解更多解法,可参考这个链接:https://blog.csdn.net/qq_37688023/article/details/85869658

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值