问题描述
杨辉三角形又称Pascal三角形,它的第i+1行是(a+b)i的展开式的系数。
它的一个重要性质是:三角形中的每个数字等于它两肩上的数字相加。
下面给出了杨辉三角形的前4行:
1
1 1
1 2 1
1 3 3 1
给出n,输出它的前n行。
输入格式
输入包含一个数n。
输出格式
输出杨辉三角形的前n行。每一行从这一行的第一个数开始依次输出,中间使用一个空格分隔。请不要在前面输出多余的空格。
样例输入
4
样例输出
1
1 1
1 2 1
1 3 3 1
数据规模与约定
1 <= n <= 34。
题解
关于杨辉三角形,我们需要知道的:
- 第n行有n个数字;
- 每一行的开始和结尾数字都为1;
用二维数组表示就是a[i][0]=1
(开始处j == 0);;a[i][j]=1
(结尾处i == j); - 第n+1行的第i个数字等于第n行的i-1个数字加上第n行的i个数字。
用二维数组表示就是a[i+1][j]=a[i][j-1]+a[i][j]
;
首先我们需要创建一个和杨辉三角形状一样的二维数组,然后再进行赋值和输出操作。
//创建和杨辉三角形状一样的二维数组
Scanner scanner=new Scanner(System.in);
int n=scanner.nextInt();
int[][] arr=new int[n][];
for(int i=0;i<n;i++) {
arr[i]=new int[i+1];
}
然后在通过两层循环,对杨辉三角形进行赋值操作。这里需要注意每一行的开始和结尾数字都为1。
for(int i=0;i<arr.length;i++) {
for(int j=0;j<arr[i].length;j++) {
if(j==0 || i==j) {//每一行的开始和结尾数字都为1
arr[i][j]=1;
}else {
arr[i][j]=arr[i-1][j]+arr[i-1][j-1];
}
}
}
以上两点就是本题的核心之处,完整题解代码如下:
import java.util.Scanner;
//输出n行杨辉三角形
public class YanghuiTriangle {
public static void main(String[] args) {
Scanner scanner=new Scanner(System.in);
int n=scanner.nextInt();
int[][] arr=new int[n][];
for(int i=0;i<n;i++) {
arr[i]=new int[i+1];
}
for(int i=0;i<arr.length;i++) {
for(int j=0;j<arr[i].length;j++) {
if(j==0 || i==j) {
arr[i][j]=1;
}else {
arr[i][j]=arr[i-1][j]+arr[i-1][j-1];
}
}
}
for(int i=0;i<arr.length;i++) {
for(int j=0;j<arr[i].length;j++) {
System.out.print(arr[i][j]+"\t");
}
System.out.println();
}
}
}
如果想要了解更多解法,可参考这个链接:https://blog.csdn.net/qq_37688023/article/details/85869658