大意:给出一个N个点M条边的有向带权图, 以任意点作为源点, 输出最小的最小树形图权值和, 如果没有则输出impossible
思路:先制造一个虚拟结点:它向所有结点连一条边,权值要大于原图中所有权值的和,以它为根跑最小树形图,如果ans >= 2 * sum,那么说明从虚拟结点连出去两条以上的边,即原图不连通,反之原图必联通,且权值和为ans - sum。根节点就是树形图上虚拟节点的边指向的那个结点,具体参考博客:https://blog.csdn.net/charles_zaqdt/article/details/86102491
https://blog.csdn.net/qq_38759433/article/details/82629962
#include<bits/stdc++.h>
#define inf 0x3f3f3f3f
#define maxn 1050
using namespace std;
struct node{
int u,v,w;
}edge[maxn*maxn];
int n,m,cnt,sum,pos;
int in[maxn],id[maxn],pre[maxn],vis[maxn];
int zhuliu(int root){
int ans=0;
while(true){
for(int i=0;i<n;i++){
in[i]=inf;
}
for(int i=0;i<cnt;i++){
int u=edge[i].u;
int v=edge[i].v;
if(edge[i].w<in[v]&&u!=v){
pre[v]=u;
in[v]=edge[i].w;
if(u==root){
pos=i;//标记最小根
}
}
}
for(int i=0;i<n;i++){
if(i==root) continue;
if(in[i]==inf) return -1;
}
int num=0;
memset(id,-1,sizeof id);
memset(vis,-1,sizeof vis);
in[root]=0;
for(int i=0;i<n;i++){
ans+=in[i];
int v=i;
while(vis[v]!=i&&id[v]==-1&&v!=root){
vis[v]=i;
v=pre[v];
}
if(id[v]==-1&&v!=root){
for(int j=pre[v];j!=v;j=pre[j]){
id[j]=num;
}
id[v]=num++;
}
}
if(num==0){
break;
}
for(int i=0;i<n;i++){
if(id[i]==-1){
id[i]=num++;
}
}
for(int i=0;i<cnt;i++){
int v=edge[i].v;
edge[i].u=id[edge[i].u];
edge[i].v=id[edge[i].v];
if(edge[i].u!=edge[i].v){
edge[i].w-=in[v];
}
}
n=num;
root=id[root];
}
return ans;
}
int main(){
while(~scanf("%d%d",&n,&m)){
for(int i=0;i<m;i++){
scanf("%d%d%d",&edge[i].u,&edge[i].v,&edge[i].w);
sum+=edge[i].w;
}
sum++;
cnt=m;
for(int i=0;i<n;i++){
edge[cnt].u=n;
edge[cnt].v=i;
edge[cnt++].w=sum;
}
n++;
int ans=zhuliu(n-1);
if(ans==-1||ans>=2*sum){
printf("impossible\n");
}else{
printf("%d %d\n",ans-sum,pos-m);
}
printf("\n");
}
return 0;
}