朋友配对问题(Friends Pairing Problem)--动态规划

这篇博客探讨了朋友配对问题,其中n个朋友可以选择单身或配对。问题通过动态规划解决,利用递归公式f(n) = f(n - 1) + (n - 1)* f(n - 2),揭示了问题与斐波那契数的相似性。文章以代码形式展示了如何简化递归求解过程。
摘要由CSDN通过智能技术生成

给定n个朋友,每个人可以单身,也可以与其他朋友配对。 每个朋友只能配对一次。 找出朋友保持单身或配对的方法的总数。
例如当n = 3,既有3个朋友,此时共有四种方式
{1},{2},{3} 全部是单身
{1},{2,3} 1是单身,2和3配对
{1,2},{3} 1和2配对,3单身
{1,3},{2} 1和3配对,2单身
那么该如何解决这个问题呢
假设f(n)等于n个人单身或者配对的总数目。
对于第n个人,有两种选择
1)第n个人单身,我们回到f(n - 1)。
2)第n个人和剩余的n - 1个人任意配对,共有(n - 1)* f (n - 2)种。
因此f(n)可以递归的表示为f(n) = f(n - 1) + (n - 1)* f(n - 2)
由于上述递归公式具有重叠的子问题,因此我们可以使用动态规划来解决。

class GFG {
    
    public int countFriendsPairings(int n) 
    {
    
        int dp[] = new int[n + 1]; 
        for (int i = 0; i 
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值