给定n个朋友,每个人可以单身,也可以与其他朋友配对。 每个朋友只能配对一次。 找出朋友保持单身或配对的方法的总数。
例如当n = 3,既有3个朋友,此时共有四种方式
{1},{2},{3} 全部是单身
{1},{2,3} 1是单身,2和3配对
{1,2},{3} 1和2配对,3单身
{1,3},{2} 1和3配对,2单身
那么该如何解决这个问题呢
假设f(n)等于n个人单身或者配对的总数目。
对于第n个人,有两种选择
1)第n个人单身,我们回到f(n - 1)。
2)第n个人和剩余的n - 1个人任意配对,共有(n - 1)* f (n - 2)种。
因此f(n)可以递归的表示为f(n) = f(n - 1) + (n - 1)* f(n - 2)
由于上述递归公式具有重叠的子问题,因此我们可以使用动态规划来解决。
class GFG {
public int countFriendsPairings(int n)
{
int dp[] = new int[n + 1];
for (int i = 0; i