买卖股票的zui佳时机

1.买卖股票的最佳时机

给定一个数组 prices ,它的第 i 个元素 prices[i] 表示一支给定股票第 i 天的价格,只能选择 某一天 买入这只股票,并选择在未来的某一个不同的日子 卖出该股票。设计一个算法来计算能获取的最大利润。

返回你可以从这笔交易中获取的最大利润,如果不能获取任何利润,返回 0 。

动态规划五部曲:

(1)dp数组及下标含义

dp[i][0]表示第i天持有股票所得现金,dp[i][1]表示第i天不有股票所得现金。

(2)确定递归函数

确定dp[i][0]:若第i-1天持有股票,dp[i][0] = dp[i-1][0];若第i-1天未持有股票,dp[i][0] = -prices[i]。

确定dp[i][1]:若第i-1天持有股票,dp[i][1] = dp[i-1][0]+price[i];若第i-1天未持有股票,dp[i][1] = dp[i-1][1]。

(3)dp数组初始化

dp[0][0] = -prices[0],dp[0][1] = 0。

(4)遍历顺序

从前往后进行遍历。

(5)举例推导dp数组

实现代码如下:

//买卖股票的最佳时机
int maxProfit(vector<int>& prices) {
	if(prices.size() == 0) return 0; 
	//1.dp数组及下标含义
	//dp[i][0]为第i天持有股票所得最多现金
	//dp[i][1]为第i天不持有股票所得最多现金
	vector<vector<int>> dp(prices.size(), vector<int> (2));
	//3.dp数组初始化
	dp[0][0] = -prices[0];
	dp[0][1] = 0;
	
	//2.递归表达式 
	//4.遍历顺序
	for(int i = 1; i<prices.size(); i++) {
		dp[i][0] = max(dp[i-1][0], -prices[i]);
		dp[i][1] = max(dp[i-1][1], prices[i] + dp[i-1][0]);
	}
	//5.举例推导dp数组
	return dp[prices.size()-1][1];
}

2.买卖股票的最佳时机II

给定一个数组,它的第 i 个元素是一支给定股票第 i 天的价格。

设计一个算法来计算你所能获取的最大利润。你可以尽可能地完成更多的交易(多次买卖一支股票),注意:不能同时参与多笔交易(你必须在再次购买前出售掉之前的股票)。

该问题与上一个问题唯一的区别是股票可以买卖多次,在动规五部曲中主要区别体现在递推公式。

(2)确定递推函数

dp[i][0]表示第i天持有股票所得现金,dp[i][1]表示第i天不有股票所得现金。

确定dp[i][0]:若第i-1天持有股票,dp[i][0] = dp[i-1][0];若第i-1天未持有股票,dp[i][0] = dp[i-1][1] - price[i]。

确定dp[i][1]:若第i-1天持有股票,dp[i][1] = dp[i-1][0]+price[i];若第i-1天未持有股票,dp[i][1] = dp[i-1][1]。

实现代码如下:

int maxProfit(vector<int>& prices) {
    int len = prices.size();
    vector<vector<int>> dp(len, vector<int>(2, 0));
    dp[0][0] -= prices[0];
    dp[0][1] = 0;
    for (int i = 1; i < len; i++) {
        dp[i][0] = max(dp[i - 1][0], dp[i - 1][1] - prices[i]);
        dp[i][1] = max(dp[i - 1][1], dp[i - 1][0] + prices[i]);
    }
    return dp[len - 1][1];
}

3.买卖股票的最佳时机III

给定一个数组,它的第 i 个元素是一支给定的股票在第 i 天的价格,设计一个算法来计算所能获取的最大利润,最多可以完成两笔交易,注意:你不能同时参与多笔交易(你必须在再次购买前出售掉之前的股票)。

该题的区别是整个过程中最多只能完成两次交易,思路一是遍历从0-i天最大收益,i+1-最后最大收益,加在一起为总收益,实现代码如下,但在一个测试用例中超时了。

//买卖股票的最佳时机III
//分成两次买卖 计算两次和的最大值 
int Profit(vector<int>& prices, int start, int end) {
	//1.dp数组及下标含义
	//dp[i][0]表示第i天持有股票的最大收益
	//dp[i][1]表示第i天未持有股票的最大收益
	vector<vector<int>> dp(prices.size(), vector<int>(2,0));
	//3.dp数组初始化
	dp[start][0] = -prices[start];
	dp[start][1] = 0;
	//2.确定递推数组
	//4.遍历顺序
	for(int i = start + 1; i<=end; i++) {
		dp[i][0] = max(dp[i-1][0], -prices[i]);
		dp[i][1] = max(dp[i-1][1], dp[i-1][0]+prices[i]);
	}
	//5.举例推导dp数组
	return dp[end][1];
}

int maxProfit(vector<int>& prices) {
	if(prices.size() == 1) return 0;
	int result = 0;
	int result1 = 0;
	int result2 = 0;
	for(int i = 1; i<prices.size(); i++) {
		result1 = Profit(prices, 0, i);
		result2 = Profit(prices, i+1, prices.size()-1);
		result = max(result, result1 + result2);
	}
	return result;
}

接下来用动规五部曲:

每天可以对应五中操作:不参加操作,第一次持有,第一次不持有,第二次持有,第二次不持有。

(1)dp数组及下标含义

dp[i][j]表示第i天,第j种状态所得最大现金。

(2)确定递归函数

确定dp[i][1]:

  • 第i天买入,dp[i][1] = dp[i-1][0] - prices[i]
  • 第i天没有操作,dp[i][1] = dp[i-1][1]

确定dp[i][2]:

  • 第i天卖出,dp[i][2] = dp[i-1][1] + prices[i]
  • 第i天没有操作,dp[i][2] = dp[i-1][2]

确定dp[i][3]:

  • 第i天买入,dp[i][3] = dp[i-1][2] - prices[i]
  • 第i天没有操作,dp[i][3] = dp[i-1][3]

确定dp[i][4]:

  • 第i天卖出,dp[i][4] = dp[i-1][3] + prices[i]
  • 第i天没有操作,dp[i][4] = dp[i-1][4]

(3)dp数组初始化

dp[0][0] = 0,dp[0][1] = -price[0],dp[0][2] = 0,dp[0][3] = -price[0],dp[0][4] = 0。

(4)遍历顺序

从前往后进行遍历。

(5)举例推导dp数组

实现代码如下:

//动态规划
int maxProfit(vector<int>& prices) {
	if(prices.size() == 1) return 0;
	//1.dp数组及下标含义
	vector<vector<int>> dp(prices.size(), vector<int>(5,0));
	//3.dp数组初始化
	dp[0][1] = -prices[0];
	dp[0][3] = -prices[0];
	//2.确定递推数组
	//4.遍历顺序
	for(int i = 1; i<prices.size(); i++) {
		dp[i][0] = dp[i - 1][0];
        dp[i][1] = max(dp[i - 1][1], dp[i - 1][0] - prices[i]);
        dp[i][2] = max(dp[i - 1][2], dp[i - 1][1] + prices[i]);
        dp[i][3] = max(dp[i - 1][3], dp[i - 1][2] - prices[i]);
        dp[i][4] = max(dp[i - 1][4], dp[i - 1][3] + prices[i]);
	}
	//5.举例推导dp数组
	return dp[prices.size()-1][4];
}

4.买卖股票的最佳时机IV

给定一个整数数组 prices ,它的第 i 个元素 prices[i] 是一支给定的股票在第 i 天的价格,设计一个算法来计算你所能获取的最大利润,最多可以完成 k 笔交易,注意:不能同时参与多笔交易(你必须在再次购买前出售掉之前的股票)。

本题与上面的区别在于最多完成k笔交易,与上面类似,只不过每天有2k+1中状态,偶数就是不持有股票,奇数就是持有股票。实现代码如下:

//买卖股票的最佳时机IV
int maxProfit(int k, vector<int>& prices) {
	//1.dp数组及下标含义
	//dp[i][j]为第i天在状态j的最大利润
	vector<vector<int>> dp(prices.size(), vector<int>(2k+1, 0));
	//3.dp数组初始化
	for(int j = 1; j<=2k; j+=2) {
		dp[0][j] = -prices[0];
	} 
	//2.确定递推公式
	//4.确定遍历顺序
	for(int i = 1; i<prices.size(); i++) {
		dp[i][0] = dp[i-1][0];
		for(int j = 1; j<=2k; j++) {
			if(j % 2 == 0) {
				//第j/2次未持有 
				dp[i][j] = max(dp[i - 1][j], dp[i - 1][j-1] + prices[i]);
			}
			else if{
				//持有 
				dp[i][j] = max(dp[i - 1][j], dp[i - 1][j-1] - prices[i]);
			}
		}
	} 
	//5.举例推导dp数组
	return dp[prices.size()-1][2k]
}
非常抱歉,我之给出的示例中使用了 jQuery,而你似乎更希望使用 ZUI(一款基于 Bootstrap 的端框架)来渲染表格数据。下面是一个使用 ZUI 的示例代码: HTML 代码: ```html <table id="myTable" class="table"> <thead> <tr> <th>姓名</th> <th>龄</th> </tr> </thead> <tbody></tbody> </table> ``` JavaScript 代码: ```javascript function renderTableData(data) { var tbody = $('#myTable tbody'); tbody.empty(); data.forEach(function(item) { var row = $('<tr></tr>'); row.append($('<td></td>').text(item.name)); row.append($('<td></td>').text(item.age)); tbody.append(row); }); } ``` 在上述代码中,我们首先在 HTML 中定义了一个表格,其中包含了一个表头和一个空的表体。 然后,在 JavaScript 中定义了 `renderTableData` 函数,传入一个数据数组 `data`。函数首先通过 `$('#myTable tbody')` 获取到表格的 `<tbody>` 元素,并使用 `empty()` 方法清空其内容。 接下来,我们使用 `forEach` 方法遍历数据数组中的每个对象。对于每个对象,我们创建一个 `<tr>` 元素作为表格的一行,并使用 `text()` 方法将姓名和龄添加到 `<td>` 元素中。最后,将行添加到 `<tbody>` 中。 通过调用 `renderTableData` 函数并传入相应的数据,我们就可以将数据渲染到使用 ZUI 框架的表格中了。 请注意,为了使示例代码正常工作,你需要在 HTML 文件中引入 ZUI 的相关 CSS 和 JavaScript 文件。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值