1.买卖股票的最佳时机
给定一个数组 prices ,它的第 i 个元素 prices[i] 表示一支给定股票第 i 天的价格,只能选择 某一天 买入这只股票,并选择在未来的某一个不同的日子 卖出该股票。设计一个算法来计算能获取的最大利润。
返回你可以从这笔交易中获取的最大利润,如果不能获取任何利润,返回 0 。
动态规划五部曲:
(1)dp数组及下标含义
dp[i][0]表示第i天持有股票所得现金,dp[i][1]表示第i天不有股票所得现金。
(2)确定递归函数
确定dp[i][0]:若第i-1天持有股票,dp[i][0] = dp[i-1][0];若第i-1天未持有股票,dp[i][0] = -prices[i]。
确定dp[i][1]:若第i-1天持有股票,dp[i][1] = dp[i-1][0]+price[i];若第i-1天未持有股票,dp[i][1] = dp[i-1][1]。
(3)dp数组初始化
dp[0][0] = -prices[0],dp[0][1] = 0。
(4)遍历顺序
从前往后进行遍历。
(5)举例推导dp数组
实现代码如下:
//买卖股票的最佳时机
int maxProfit(vector<int>& prices) {
if(prices.size() == 0) return 0;
//1.dp数组及下标含义
//dp[i][0]为第i天持有股票所得最多现金
//dp[i][1]为第i天不持有股票所得最多现金
vector<vector<int>> dp(prices.size(), vector<int> (2));
//3.dp数组初始化
dp[0][0] = -prices[0];
dp[0][1] = 0;
//2.递归表达式
//4.遍历顺序
for(int i = 1; i<prices.size(); i++) {
dp[i][0] = max(dp[i-1][0], -prices[i]);
dp[i][1] = max(dp[i-1][1], prices[i] + dp[i-1][0]);
}
//5.举例推导dp数组
return dp[prices.size()-1][1];
}
2.买卖股票的最佳时机II
给定一个数组,它的第 i 个元素是一支给定股票第 i 天的价格。
设计一个算法来计算你所能获取的最大利润。你可以尽可能地完成更多的交易(多次买卖一支股票),注意:不能同时参与多笔交易(你必须在再次购买前出售掉之前的股票)。
该问题与上一个问题唯一的区别是股票可以买卖多次,在动规五部曲中主要区别体现在递推公式。
(2)确定递推函数
dp[i][0]表示第i天持有股票所得现金,dp[i][1]表示第i天不有股票所得现金。
确定dp[i][0]:若第i-1天持有股票,dp[i][0] = dp[i-1][0];若第i-1天未持有股票,dp[i][0] = dp[i-1][1] - price[i]。
确定dp[i][1]:若第i-1天持有股票,dp[i][1] = dp[i-1][0]+price[i];若第i-1天未持有股票,dp[i][1] = dp[i-1][1]。
实现代码如下:
int maxProfit(vector<int>& prices) {
int len = prices.size();
vector<vector<int>> dp(len, vector<int>(2, 0));
dp[0][0] -= prices[0];
dp[0][1] = 0;
for (int i = 1; i < len; i++) {
dp[i][0] = max(dp[i - 1][0], dp[i - 1][1] - prices[i]);
dp[i][1] = max(dp[i - 1][1], dp[i - 1][0] + prices[i]);
}
return dp[len - 1][1];
}
3.买卖股票的最佳时机III
给定一个数组,它的第 i 个元素是一支给定的股票在第 i 天的价格,设计一个算法来计算所能获取的最大利润,最多可以完成两笔交易,注意:你不能同时参与多笔交易(你必须在再次购买前出售掉之前的股票)。
该题的区别是整个过程中最多只能完成两次交易,思路一是遍历从0-i天最大收益,i+1-最后最大收益,加在一起为总收益,实现代码如下,但在一个测试用例中超时了。
//买卖股票的最佳时机III
//分成两次买卖 计算两次和的最大值
int Profit(vector<int>& prices, int start, int end) {
//1.dp数组及下标含义
//dp[i][0]表示第i天持有股票的最大收益
//dp[i][1]表示第i天未持有股票的最大收益
vector<vector<int>> dp(prices.size(), vector<int>(2,0));
//3.dp数组初始化
dp[start][0] = -prices[start];
dp[start][1] = 0;
//2.确定递推数组
//4.遍历顺序
for(int i = start + 1; i<=end; i++) {
dp[i][0] = max(dp[i-1][0], -prices[i]);
dp[i][1] = max(dp[i-1][1], dp[i-1][0]+prices[i]);
}
//5.举例推导dp数组
return dp[end][1];
}
int maxProfit(vector<int>& prices) {
if(prices.size() == 1) return 0;
int result = 0;
int result1 = 0;
int result2 = 0;
for(int i = 1; i<prices.size(); i++) {
result1 = Profit(prices, 0, i);
result2 = Profit(prices, i+1, prices.size()-1);
result = max(result, result1 + result2);
}
return result;
}
接下来用动规五部曲:
每天可以对应五中操作:不参加操作,第一次持有,第一次不持有,第二次持有,第二次不持有。
(1)dp数组及下标含义
dp[i][j]表示第i天,第j种状态所得最大现金。
(2)确定递归函数
确定dp[i][1]:
- 第i天买入,dp[i][1] = dp[i-1][0] - prices[i]
- 第i天没有操作,dp[i][1] = dp[i-1][1]
确定dp[i][2]:
- 第i天卖出,dp[i][2] = dp[i-1][1] + prices[i]
- 第i天没有操作,dp[i][2] = dp[i-1][2]
确定dp[i][3]:
- 第i天买入,dp[i][3] = dp[i-1][2] - prices[i]
- 第i天没有操作,dp[i][3] = dp[i-1][3]
确定dp[i][4]:
- 第i天卖出,dp[i][4] = dp[i-1][3] + prices[i]
- 第i天没有操作,dp[i][4] = dp[i-1][4]
(3)dp数组初始化
dp[0][0] = 0,dp[0][1] = -price[0],dp[0][2] = 0,dp[0][3] = -price[0],dp[0][4] = 0。
(4)遍历顺序
从前往后进行遍历。
(5)举例推导dp数组
实现代码如下:
//动态规划
int maxProfit(vector<int>& prices) {
if(prices.size() == 1) return 0;
//1.dp数组及下标含义
vector<vector<int>> dp(prices.size(), vector<int>(5,0));
//3.dp数组初始化
dp[0][1] = -prices[0];
dp[0][3] = -prices[0];
//2.确定递推数组
//4.遍历顺序
for(int i = 1; i<prices.size(); i++) {
dp[i][0] = dp[i - 1][0];
dp[i][1] = max(dp[i - 1][1], dp[i - 1][0] - prices[i]);
dp[i][2] = max(dp[i - 1][2], dp[i - 1][1] + prices[i]);
dp[i][3] = max(dp[i - 1][3], dp[i - 1][2] - prices[i]);
dp[i][4] = max(dp[i - 1][4], dp[i - 1][3] + prices[i]);
}
//5.举例推导dp数组
return dp[prices.size()-1][4];
}
4.买卖股票的最佳时机IV
给定一个整数数组 prices ,它的第 i 个元素 prices[i] 是一支给定的股票在第 i 天的价格,设计一个算法来计算你所能获取的最大利润,最多可以完成 k 笔交易,注意:不能同时参与多笔交易(你必须在再次购买前出售掉之前的股票)。
本题与上面的区别在于最多完成k笔交易,与上面类似,只不过每天有2k+1中状态,偶数就是不持有股票,奇数就是持有股票。实现代码如下:
//买卖股票的最佳时机IV
int maxProfit(int k, vector<int>& prices) {
//1.dp数组及下标含义
//dp[i][j]为第i天在状态j的最大利润
vector<vector<int>> dp(prices.size(), vector<int>(2k+1, 0));
//3.dp数组初始化
for(int j = 1; j<=2k; j+=2) {
dp[0][j] = -prices[0];
}
//2.确定递推公式
//4.确定遍历顺序
for(int i = 1; i<prices.size(); i++) {
dp[i][0] = dp[i-1][0];
for(int j = 1; j<=2k; j++) {
if(j % 2 == 0) {
//第j/2次未持有
dp[i][j] = max(dp[i - 1][j], dp[i - 1][j-1] + prices[i]);
}
else if{
//持有
dp[i][j] = max(dp[i - 1][j], dp[i - 1][j-1] - prices[i]);
}
}
}
//5.举例推导dp数组
return dp[prices.size()-1][2k]
}