1、 选择排序
(视频讲解,生动形象,http://v.youku.com/v_show/id_XMjU4NTY5NTcy.html)
原理:先将第一个位值上的数跟之后所有位置上的数依次进行比较,如果第一个位置上的数比第二个位置上的数大,则进行互换,然后继续将第一个位置上的数与第三个位置上的数进行比较,经过一轮的比较后,第一个位值上的数就是所有数中最小的一个,接着将第二个位置上的数与之后所有位置上的数进行比较,同样的规则,第二轮比较结束后,第二位放的就是所有数中第二小的数,依次往下比,直到最后一个位置结束。按照这种方法进行排序,就叫做选择排序。
代码
public void selectSort(int array[]){
for(int i=0;i<array.length;i++){
for(int j=i+1;j<array.length;j++){
if(array[i]>array[j])
{
int t=array[i];
array[i]=array[j];
array[j]=t;
}
}
}
}
2、 插入排序
(很有趣的视频,插入排序的趣味舞蹈:http://v.youku.com/v_show/id_XMjU4NTY5MzEy.html)
原理:给定的一组记录,将其分为两个序列组,一个为有序序列(按照顺序从小到大或者从大到小),一个为无序序列,初始时,将记录中的第一个数当成有序序列组中的一个数据,剩下其他所有数都当做是无序序列组中的数据。然后从无序序列组中的数据中(也就是从记录中的第二个数据开始)依次与有序序列中的记录进行比较,然后插入到有序序列组中合适的位置,直到无序序列组中的最后一个数据插入到有序序列组中为止。
代码:
public void insertSort(int array[]){
int j,temp;
for(int i=1;i<array.length;i++)
{
if(array[i]<array[i-1]){
temp=array[i];
for(j=i-1;j>0&&array[j]>temp;j--){
array[j+1]=array[j];
}
array[j+1]=temp;
}
}
}
3、 冒泡排序
(冒泡排序:http://v.youku.com/v_show/id_XMzMyOTAyMzQ0.html)
原理:a、比较相邻的元素。如果第一个比第二个大,就交换他们两个。
b、对每一对相邻元素做同样的工作,从开始第一对到结尾的最后一对。在这一点,最后的元素应该会是最大的数。
c、 针对所有的元素重复以上的步骤,除了最后一个。
代码:
public class BubbleSort {
public void bubbleSort(Integer[] arr, int n) {
if (n <= 1) return; //如果只有一个元素就不用排序了
for (int i = 0; i < n; ++i) {
// 提前退出冒泡循环的标志位,即一次比较中没有交换任何元素,这个数组就已经是有序的了
boolean flag = false;
for (int j = 0; j < n - i - 1; ++j) { //此处你可能会疑问的j<n-i-1,因为冒泡是把每轮循环中较大的数飘到后面,
// 数组下标又是从0开始的,i下标后面已经排序的个数就得多减1,总结就是i增多少,j的循环位置减多少
if (arr[j] > arr[j + 1]) { //即这两个相邻的数是逆序的,交换
int temp = arr[j];
arr[j] = arr[j + 1];
arr[j + 1] = temp;
flag = true;
}
}
if (!flag) break;//没有数据交换,数组已经有序,退出排序
}
}
public static void main(String[] args) {
Integer arr[] = {2, 4, 7, 6, 8, 5, 9};
SortUtil.show(arr);
BubbleSort bubbleSort = new BubbleSort();
bubbleSort.bubbleSort(arr, arr.length);
SortUtil.show(arr);
}
4、 归并排序
归并排序有两种实现方式,一种是非递归的,一种是递归的,但是我觉得如果你理解了非递归的实现,那么你就知道了归并排序的原理,而递归的也就非常简单了。
a)什么是归并排序呢?
初始将一个数组中每个元素都看成一个有序序列(数组长度为n),然后将相邻两个有序序列合并成一个有序序列,第一趟归并就可以得到n/2个长度为2(最后一个有序序列的长度可能是1,也可能不是,关键看数组中元素的个数了)的有序序列,在进行两两归并,得到n/4个长度为4的有序序列(最后一个的长度可能小于4)…一直这样归并下去,直到得到一个长度为n的有序序列1
b)简单来说,通过三步,解决三个问题,就可以写出归并排序
1、解决相邻两个有序序列归并成一个有序序列,非常简单,新增一个数组(长度和需要排列的数组相同),二路归并的核心操作,在归并的过程中,可能会破坏原来的有序序列,所以,将归并的结果存入另外一个数组中,设两个相邻的有序序列为r[s] r[m]和r[m+1]r[t],将这两个有序序列归并成一个有序序列,r1[s]~r1[t],设三个参数i,j,k。 i和j分别指向两个有序序列的第一个记录,即i=s,j=m+1,k指向存放归并结果的位置(也就是将归并结果放到r1中的哪个位置)k=s。然后,比较i和j所指记录的数,取出较小者作为归并结果存入k所指的位置,然后将较小者的指向往后移动,直至两个有序序列之一的所有记录都取完,在将另一个有序序列的剩余记录顺序送到归并后的有序序列中(也就是放到r1中)
2、如何完成一趟归并?
这里就需要分情况了,三种情况,假设每个有序序列中的元素个数为h(第一次归并的h=1),i=0,从第一个元素开始。归并每次取两个有序序列,那么跨度就是2h,问题就来了,只要知道长度为n(n为数组的最大下标值)的数组中有几个这样的两个有序序列,那么可以进行不同的操作了。
第一种情况:(i+2h-1) <= n //比如,i=0,h=1时,(i+2h-1)的意思就是指向了第一个两个有序序列的最后一个位置的下标值,用它来跟n(n为数组最大的下标值)比较,如果小于n,那么说明后面还有别的数,如果等于n,说明到结尾了,整个数组正好全是两个有序序列得,不会有多余数。那么就执行一次归并,将这两个有序序列归并,然后i加2h。如果还符合这个条件,继续归并,如果不符合,判断别的情况。
第二种情况:(i+h-1) < n //说明最后还有两个有序序列,但是最后一个有序序列的长度不是h,同样将其进行归并
第三种情况: (i+h-1) >= n //说明只剩下最后一个有序序列,则直接将其有序序列送到r1的相应位置
public void mergePass(int []r,int []r1,int h,int n)
{
int i=0;
while((i+2*h-1)<=h){
merge(r,r1,i,i+h-1,i+2*h-1);
i+=2*h;
}
if(i+h-1<n){
merge(r,r1,i,i+h-1,n);
i+=2*h;
}else{
for(;i<=n;i++){
r1[i]=r[i];
}
}
}
//二分归并非递归排序
public void mergeSort(int[] r,int[] r1,int n)
{
int h=1;
while(h<n){
mergePass(r,r1,h,n);
h=2*h;
mergePass(r1,r,h,n);
h=2*h;
}
}
六、快速排序
以前不知道在哪Copy的概念,但是看着不太明白,根据代码,画一遍程序流程的图就能明白了。
快速排序是对冒泡排序的增强,增强得点在于:冒泡排序中,记录的比较和移动是在相邻两个位置进行的,
记录每次交换只能后移一个位置,因而总的比较次数和移动次数较多,而快排记录的比较和移动是从两端向中间进行的,
较大的记录一次就能从前面移动到后面,较小的记录一次就能从后面移动到前面,这样就减少了比较次数和移动次数
快速排序原理:选取一个轴值(比较的基准),
将待排序记录分为独立的两个部分,左侧记录都是小于或等于轴值,右侧记录都是大于或等于轴值,
然后分别对左侧部分和右侧部分重复前面的过程,也就是左侧部分又选择一个轴值,又分为两个独立的部分,这就使用了递归了。到最后,整个序列就变得有序了。
问题:如何选择轴值?如何将序列变成左右两部分?
轴值的选择有三种:
1、选取序列的第一个位置上的记录
2、选择序列的中间位置上的记录
3、将序列第一个位置 和 中间位置 和 末尾位置上的记录进行比较,选择大小居中的记录,
如何将序列划分成左右两部分?
看图的执行流程,当一趟比较下来,轴值的左侧和右侧就被排好了,其中利用了first和end两个参数,一个从起点开始,一个从末尾开始,当两个相等时,就将序列中所有记录都遍历了一遍,
第一次的比较次数是和选择排序第一次比较次数是一样的,但是之后就开始不一样了,因为在轴值的左侧的元素就不用跟轴值右侧的元素进行比较了,而选择排序还是跟所有的比。
代码:
public class Kuaisu {
/*
* 对序列划分为左右两个部分,
* 轴值为数组第一个元素
* i,first:指向需要进行左右两侧排序的序列的第一个位置
* j,end:指向需要进行左右两侧排序的序列的最后一个位置
*/
public static int Partition(int[] array, int first, int end){
int i = first;
int j = end;
while(i < j){ //i和j会慢慢往中间靠,当i==j时,说明已经排好左右两侧的数据了,这里为什么不写i!=j作为条件呢?原因是有些情况是first>end,比如first=0,而end=-1,
while(i<j&&array[i] < array[j]){//右侧进行扫描,array[i]是轴值
j--; //最后一个元素是大于轴值的,那么就不动,因为已经在其右边的,j--,往前移动一个位置
}
if(i < j){ //这一步是当array[i] > array[j]。轴值的位置变为了j
int temp = array[i];
array[i] = array[j];
array[j] = temp;
i++;
}
while(i<j&&array[i] < array[j]){//左侧扫描,如果都比轴值小的话,i往后移动
i++;
}
if(i < j){ //当发现有比轴值大的数时,进行互换
int temp = array[i];
array[i] = array[j];
array[j] = temp;
j--;
}
}
return j;
}
public static void quickSort(int[] array, int first, int end){
if(first < end){
int pivot = Partition(array,first,end); //返回轴值的位置,
quickSort(array,first,pivot-1);//第一次排好后,pivot-1就是左侧最尾部的位置
quickSort(array,pivot+1,end); //pivot+1,右侧最开始的位置。
}
}
public static void main(String[] args) {
int[] array= {1,4,6,7,2,9};
quickSort(array,0,5);
for(int i=0;i<=5;i++) {
System.out.print(array[i]+" ");
}
}
}
七、希尔排序
希尔排序其实是插入排序的升级版本,本质上进行的也是插入排序的操作,但是希尔排序并不是把一组记录看成一个整体,而将整个记录分为了若干组记录,然后在对每组记录进行插入排序,分组规则为如下所示:假设有 1 2 3 4 5 6 7 8 9 10 十个位置(每个位置上都会放数,这里忽略数,只讨论位置)。(省略了插入排序操作,只对如何分组进行讲解,而完整的希尔排序就是在每次分组完之后进行插入排序操作即可)
步长为:5、3、1
第一次分为5组记录(组数跟步长是一样的):1,6 、2,7、3,8、 4,9、 5,10 这五组记录,分别对这五组记录进行插入排序。
第二次分为3组记录:1,4,7,10、2,5,8、3,6,9 这三组记录,分别对这三组记录进行插入排序
第三次分为1组记录:1 2 3 4 5 6 7 8 9 10, 为这组记录进行插入排序, 而步长只要满足最后一次为1,并且是从大到小即可。一般使用(数组长度/2) 或者 (数组长度/3 +1) 来代表步长。
这样做的好处是:
[1]将待排序的数组元素分成多组,每组中记录数相对较少.
[2]经过前几次的排序后,整个序列变为了“基本有序序列”,最后在对所有元素进行一次直接插入排序。
[3]直接插入排序对基本有序和记录数少的序列的效率是非常高的,而希尔排序就是利用了这两点。
原理图解释:第一次分组,49,13、38,27、65,49、97,55、76,04 五组,对这五组分别进行插入排序,在49找到13时,就会进行插入排序,位置会进行互换,而并非先全部分组,后排序。按照步长一直重复执行,直到步长为1后,执行完最后一次直接插入排序,整个希尔排序就完成了。
八、堆排序
堆排序是对选择排序进行增强,选择排序一个数据要跟每个数据都进行一次比较,并没有利用到一些比较的结果,比如,4 跟10比较,3跟4比较后,按理说不用让3跟10在比了,但是选择排序并没有这种智能化,而是老老实实的比较,而堆排序就完美的利用了前几次比较的结果,从而增加了效率。
讲解堆排序之前,必须要知道什么是堆?
堆是一颗完全二叉树,什么是完全二叉树?只有最下面的两层结点度能够小于2,并且最下面一层的结点都集中在该层最左边的若干位置的二叉树.
这个图是一个完全二叉树,但不是堆。
堆分两种,大顶堆和小顶堆
大顶堆:在完全二叉树的基础上,每个父节点都比自己的两个子结点大,这样的就是大顶堆,特点是根节点是最大的值,90比70,80大,70比60,10大,以此类推
小顶堆:和大顶堆相反,根节点是最小的值,并且每个父结点都比自己的子节点要小
堆排序就是利用堆的这种特点进行编写的,原理:先将一组拥有n个元素的序列构建成大顶堆或者小顶堆,在将根结点上的数跟堆最后一位数进行互换,此时,第n位的数就是整个序列中最大或者最小的数了,然后在将前n-1位元素进行构建成大顶堆或者小顶堆,在将根结点跟第n-1位进行互换,得到第2大或者第2小的数,在将前n-2位数进行构建,依次类推,直到只剩下1位元素即结束,排序完成。
通过讲解原理:堆排序分为三步
1、构建大顶堆或小顶堆
2、循环
根节点和末尾结点进行互换,
构建大顶堆或小顶堆
3、排序完成
代码:
/*
* 要知道什么是堆这种数据结构
* 堆是一颗完全二叉树。分为大顶堆和小顶堆,
* 大顶堆,每个父结点都比自己的子节点大,也就是根结点为最大
* 小顶堆,每个父结点都比自己的子节点小,也就是根结点最小。
* 按照大顶堆和小顶堆这种特点,将一个无序的n个记录的序列构建成大顶堆,将根节点上的数与最后一个
* 结点n进行交换,然后在对n-1个记录进行构建大顶堆,继续把根节点与最后一个结点(n-1)互换,继续上面的操作。
* 从小到大排序,则使用大顶堆
* 从大到小排序,则使用小顶堆
* 从小到大
*/
public void heapSort(int[] array){
//第一步:将数组构建成一个大顶堆
int length = array.length; //length为数组的长度,有几个数就是几,不要跟数组最大的下标值搞混淆了,有10个数,length就是10,数组最大下标为9
//找到完全二叉树中的最后一个父结点(拥有子结点)的位置length/2,也就是最后一个父节点是在完全二叉树的第length/2的位置上,但是在数组中的位置是 (length/2)-1,它代表父节点在数组中的位置
for(int i = length/2-1; i >= 0; i--){//依次遍历每一个父节点,比如最后一个父节点是4,那么它前面所有结点都是父节点,都需要进行构建
adjustMaxHeap(array,i,length); //无序序列,所以需要从下往上全部进行构建。该方法做的事情就是,比较找到父节点,和两个子节点中最大的数放置到父节点的位置上。
}
//第二步:构建好了大顶堆后,将第一个数与最后一个进行互换,互换后继续调整大顶堆,
for(int i = length-1; i > 0; i--){
wrap(array, 0, i); //互换数据,提取出来了。互换数据后,就已经不在是大顶堆了,需要重新进行构建
adjustMaxHeap(array, 0, i); //从上往下,因为基本上都已经有序了,没必要在从下往上重新进行构建堆了,这就利用了前面比较的结果,减少了很多次比较。
}
}
//互换数据
private void wrap(int[] array, int i, int j){
int temp = array[i];
array[i] = array[j];
array[j] = temp;
}
/**
* 构建大顶堆的操作,
* 父节点和其左右子节点的大小比较和互换,每次将父结点的位置和数组传进来,
* 就能构建出大顶堆了。
*
* @param array 排序数组
* @param s 当前所指父节点在数组中位置(下标)
* @param length 数组的长度。用来判断父节点的两个子节点是否存在。
* 父节点和左子结点的关系: 2s+1
* 父结点和右子结点的关系: 2s+2
*/
private void adjustMaxHeap(int[] array, int s, int length) {
int temp = array[s];
int child; //代表更大一方的子节点的数组下标
//2s+1 是左子节点在数组中的位置,本来s+1是父节点在二叉树中的位置,2*(s+1) 是左子节点在二叉树中的位置,那么左子节点在数组中的位置为2*(s+1)-1,简化就为2s+1了
//为什么需要这个for循环?很多人不理解,觉得这个方法里只需要找到父节点和两个子结点最大的一个即可,这是因为忽略了一个小问题,看下面到152行的解释应该就明白了。
for(child=s*2+1; child <= length-1; child=child*2+1){ //child <= length-1 说明肯定有子节点,如果child=length-1,说明只有左结点
if(child < length-1&&array[child] < array[child+1]){//child<length-1,就说明肯定右子结点,将其进行比较,找出大的一方的数组下标
child++; //变成右子节点所在数组中的下标,找到那个较大的子节点
}
if(array[child] > temp){ //将子节点(可能是左结点,也可能是右结点,就看上面这个判断了)与父节点进行比较,子节点大的话,将大的赋给父节点
array[s] = array[child];
}else{ //父节点大,什么也不做,跳出这层循环。
break;
}
array[child] = temp; //父结点变为最大时,要将原先的父节点的值给现在的子节点。
s = child; //因为子节点的值变了,那么就不知道这个子节点在他自己的两个子节点中是否还是最大,所以需要将该子节点的数组下标给s,去重新检测一遍。只有当父节点为最大时,才会执行break退出循环。
}
}
以上内容摘自https://www.cnblogs.com/whgk/p/6596787.html