题目描述
给定两个大小为 m 和 n 的有序数组 nums1 和 nums2。
请你找出这两个有序数组的中位数,并且要求算法的时间复杂度为 O(log(m + n))。
你可以假设 nums1 和 nums2 不会同时为空。
解法
本人在算法方面完全是小白,在做这道题之前完全不懂什么是时间复杂度,百度了之后也不是很明白,于是就硬着头皮按照自己的思路往下做,结果提交还通过了(意外之喜)
我的思路就是把这两个数组合并成一个,然后进行排序,从中选出中位数即可
代码段(PYTHON3)
class Solution:
def findMedianSortedArrays(self, nums1, nums2):
"""
:type nums1: List[int]
:type nums2: List[int]
:rtype: float
"""
nums3 = nums1+nums2
nums3.sort()
m = len(nums1)
n = len(nums2)
if (m+n)%2 == 0:
m = (nums3[int((m+n)/2)]+nums3[int((m+n)/2-1)])/2
m = float(m)
return m
else:
m = nums3[int((m+n-1)/2)]
m = float(m)
return m