二分查找(非递归实现)
二分查找的前提是有序,并且每次查找的范围都是闭区间
#include <iostream>
#include<string.h>
#include <algorithm>
using namespace std;
int a[10] = {1, 4, 6, 10, 34, 56, 78, 90, 98, 99};
int main()
{
//二分查找(非递归实现)
int n = 0, left = 0, right = 9;
scanf("%d", &n);
bool flag = false;
while(left <= right){
int mid = (left + right) / 2;
//当left和right较大时,可以使用如下等价方法
//int mid = left + (right - left) / 2;
if(a[mid] == n){
cout << mid << endl;
flag = true;
break;
}
else if(a[mid] > n) right = mid - 1;
else if(a[mid] < n) left = mid + 1;
}
if(!flag) scanf("抱歉,未找到");
system("pause");
return 0;
}
二分查找(递归实现)
#include <iostream>
#include<string.h>
#include <algorithm>
using namespace std;
int a[10] = {1, 4, 6, 10, 34, 56, 78, 90, 98, 99};
bool binarySearch(int left, int right, int n){
if(left > right) return false;
int mid = (left + right) / 2;
if(a[mid] == n){
cout << mid ;
return true;
}
else if(a[mid] > n) return binarySearch(left, mid - 1, n);
else return binarySearch(mid + 1, right, n);
}
int main()
{
//二分查找(递归实现)
int n = 0, left = 0, right = 9;
scanf("%d", &n);
bool flag = binarySearch(left, right, n);
if(!flag) printf("Sorry,cannot find");
system("pause");
return 0;
}
查找第一个大于目标值元素的下标
#include <iostream>
#include<string.h>
#include <algorithm>
using namespace std;
int a[11] = {1, 4, 6, 6, 6, 8, 78, 90, 98, 99};
//在一个有重复元素的数组中找到第一个大于等于目标值的下标
int lowerBound(int left, int right, int n){
//注意与二分查找的区别,二分查找只要找到就会return,而这个必须找到 left== right的位置才会结束
while(left < right){
int mid = (left + right) / 2;
if(a[mid] >= n) right = mid;//如果中间值大于等于目标值,则在[left, mid]区间查找
else if(a[mid] < n) left = mid + 1; //如果中间值小于等于目标值,则在[mid + 1, right]区间查找
}
return left;
}
int main()
{
int n = 0 ;
scanf("%d", &n);
//因为可能所有数都小于目标值,此时应返回n+1
int ans = lowerBound(0, 10, n);
printf("%d", ans);
system("pause");
return 0;
}
大于目标值的第一个元素下标
代码与上一个类似,只是在判断时稍微改了改哦,注意初始的left 和 right 应该包括所有可能出现的结果,即要输入[0,n]
#include <iostream>
#include<string.h>
#include <algorithm>
using namespace std;
int a[11] = {1, 4, 6, 6, 6, 8, 78, 90, 98, 99};
//在一个有重复元素的数组中找到第一个大于目标值的下标
int lowerBound(int left, int right, int n){
//注意与二分查找的区别,二分查找只要找到就会return,而这个必须找到 left== right的位置才会结束
while(left < right){
int mid = (left + right) / 2;
if(a[mid] > n) right = mid;//如果中间值大于等于目标值,则在[left, mid]区间查找
else if(a[mid] <= n) left = mid + 1; //如果中间值小于等于目标值,则在[mid + 1, right]区间查找
}
return left;
}
int main()
{
int n = 0 ;
scanf("%d", &n);
//因为可能所有数都小于目标值,此时应返回n+1
int ans = lowerBound(0, 10, n);
printf("%d", ans);
system("pause");
return 0;
}
在一个有序数组中查找满足任意条件的第一个元素
在模板中,无论数组是增序还是降序,都要先判断是否满足条件,因为一旦满足条件就要去左区间寻找,才会找到第一个元素。欧耶!!!
如果找满足条件的最后一个元素,可以先找到不满足条件的最后一个元素,然后减一;
#include <iostream>
#include<string.h>
#include <algorithm>
using namespace std;
int a[11] = {1, 4, 6, 6, 6, 8, 78, 90, 98, 99};
//在一个有重复元素的数组中找到第一个大于目标值的下标
int lowerBound(int left, int right, int n){
while(left < right){
int mid = (left + right) / 2;
if(元素应该满足的条件) right = mid;//如果中间值大于等于目标值,则在[left, mid]区间查找
else if(对立问题) left = mid + 1; //如果中间值小于等于目标值,则在[mid + 1, right]区间查找
}
return left;
}
int main()
{
int n = 0 ;
scanf("%d", &n);
//因为可能所有数都小于目标值,此时应返回n+1
int ans = lowerBound(0, 10, n);
printf("%d", ans);
system("pause");
return 0;
}
二分法的应用
装水问题
木条切割问题
快速幂
#include <iostream>
#include<string.h>
#include <algorithm>
using namespace std;
typedef long long LL;
LL binaryPower(LL a, LL b, LL m){
//如果指数为0,返回1
if(b == 0) return 1;
//如果指数为奇数,则返回b-1
if(b % 2 == 1){
return a * binaryPower(a, b - 1, m) % m;
}
//如果指数为偶数,则返回 b / 2
else{
int temp = binaryPower(a, b / 2, m) ;
return temp * temp % m;
}
}
int main()
{
LL a, b, m;
scanf("%lld%lld%lld", &a, &b, &m);
LL ans = binaryPower(2, 10, 100);
printf("%lld", ans);
system("pause");
return 0;
}
合并两个有序数组
#include <iostream>
#include<string.h>
#include <algorithm>
using namespace std;
typedef long long LL;
int a[3] = {1,3,5}, b[3] = {2,4,6}, c[10] = {0};
void merge1(int a[], int b[], int c[], int m, int n){
int i = 0, j = 0, k = 0;
//如果i < m && j < n 就一直执行
while(i < m && j < n){
if(a[i] <= b[j]){
c[k++] = a[i++];
}
else if(a[i] > b[j]) c[k++] = b[j++];
}
//如果有一个数组没有输出完,就全部输出
while(i < m) c[k++] = a[i++];
while(j < n) c[k++] = b[j++];
}
int main()
{
merge1(a, b, c, 3, 3);
for(int i = 0; i < 6; i++) printf("%d", c[i]);
system("pause");
return 0;
}