树的概念
树(英语: tree) 是一种抽象数据类型(ADT)或是实作这种抽象数据类型的数据结构,用来模拟具有树状结构性质的数据集合。它是由n (n>=1)个有限节点组成一个具有层次关系的集合。把它叫做“树”是因为它看起来像一棵倒挂的树,也就是说它是根朝上,而叶朝下。
特点:
- (1)每个节点有零个或多个子节点
- (2)没有父节点的节点称为根节点
- (3)每个非根节点有且仅有一个父节点
- (4)除根节点,每个子节点可以分为多个不相交的子树
树的基本术语:
- (1)节点的度:一个节点含有的子树的个数称为该节点的度
- (2)树的度:一棵树中,最大的节点的度称为数的度
- (3)叶节点或终端节点:度为0的节点
- (4)父亲节点或父节点:若一个节点含有子节点,则这个节点称为其子节点的父节点;
- (5)孩子节点(子节点):一个节点含有的子树的根节点称为该节点的子节点。
- (6)兄弟节点:具有相同父节点的节点互称为兄弟节点;
- (7)节点的层次:从根开始定义起,根为第1层,根的子节点为第2层,以此类推;
- (8)树的高度或深度:树中节点的最大层次;
- (9)堂兄弟节点:父节点在同一层的节点互为堂兄弟;
- (10)节点的祖先:从根到该节点所经分支上的所有节点;
- (11)子孙:以某节点为根的子树中任一节点都称为该节点的子孙。
- (12)森林:由m (m>=0)棵互不相交的树的集合称为森林;
树的种类
- 无序数:树中任意节点的子节点之间没有顺序关系,这种树称为无序树,也称为自由树。
- 有序树:树中任意节点的子节点之间有顺序关系,这种树称为有序树;
- 二叉树:每个节点最多含含有两个子树的树称为二叉树;
- 完全二叉树:对于一颗二叉树,假设其深度为d(d>1)。除了第d层外,其它各层的节点数目均已达最大值,且第d层所有节点从左向右连续地紧密排列,这样的二叉树被称为完全二叉树,其中满二叉树的定义是所有叶节点都在最底层的完全二叉树;
- 平衡二叉树(AVL树) :当且仅当任何节点的两棵子树的高度差不大于1的二叉树;
- 排序二叉树(二叉查找树(英语: Binary Search Tree),也称二叉搜索树、有序二叉树) ;
- 霍夫曼树:带权路径最短的二叉树称为哈夫曼树或最优二叉树;
- B树:一种对读写操作进行优化的自平衡的二叉查找树,能够保持数据有序,拥有多余两个子树;
- 二叉树:每个节点最多含含有两个子树的树称为二叉树;
树的应用场景
- 1.xml,html 等,那么编写这些东西的解析器的时候,不可避免用到树
- 2.路由协议就是使用了树的算法
- 3.mysql数据库索引
- 4.文件系统的目录结构
- 5.所以很多经典的AI算法其实都是树搜索,此外机器学习中的decision tree也是树结构
二叉树的基本概念
二叉树是每个节点最多有两个子树的树结构。通常子树被称作“左子树”(left subtree )和“右子树”(right subtree )
二叉树的性质
性质1:在二叉树的第i层上至多有2^(i-1)个节点(i>0)
性质2:深度为k的二叉树至多有2^k-1个节点(k>0)
性质3:对于任意一棵二叉树,如果其叶节点数为N0,而度数为2的结点总数为N2, 则N0=N2+1;
性质4:具有n个节点的完全二叉树的深度必为log2(n+1)
性质5:对完全二叉树,若从上至下、从左至右编号,则编号为i的结点,其左孩子编号必为2i,其右孩子编号必为2i+1;其双亲的编号必为i/2 (i=1时为根,除外)
二叉树的实现
节点的定义
# defined 二叉树的节点
class Node:
def __init__(self, elem):
self.elem = elem
self.lchild = None
self.rchild = None
增加节点
#Add element item
def add(self,elem):
#create node
node = self.Node(elem)
if self.root == None:
self.root=node
else:
queue = []
queue.append(self.root)
while queue:
curNode = queue.pop(0)
if curNode.lchild == None:
curNode.lchild = node
return
else:
queue.append