Nastya Studies Informatics(数学)

本文探讨了通过枚举a的n值来简化gcd(a, b)和lcm(a, b)计算的方法,关键在于确定n的范围并应用到1e9以下整数。通过分解a=nm和b=mz,找到x=m和y=nmz的关系,从而减少计算复杂度。
摘要由CSDN通过智能技术生成

Nastya Studies Informatics(数学)

题意

a,b为两个正整数,l<= a,b <=r。x=gcd(a,b),y=lcm(a,b)。
思路:如果直接暴力,利用xy=ab 来做的话,肯定会T!现在,我们设 a=nm,b=mz.那么,x=m,y=nmz,ab=nmmz。如果我们来枚举a的所有可能的话,1e9,太大,所以我们考虑枚举n的所有可能!!我们先来确定n的范围,最小为1,n最大值为sqrt(n*z),确定了范围后,就可以开始写了。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值