约瑟夫环问题

约瑟夫环

这个问题来源于犹太人约瑟夫经历过的故事,在罗马人占领乔塔帕特后,约瑟夫和他的朋友与39 个犹太人躲到一个洞中,39个犹太人决定宁愿死也不要被敌人抓到,于是决定了一个自杀方式,41个人排成一个圆圈,由第1个人开始报数,每报数到第3人时,该人就必须自杀,然后再由下一个人重新报数,直到所有人都自杀身亡为止。
然而约瑟夫和他的朋友并不想遵从这个规则,于是,他们想出新的思路:从一个人开始,越过k-2个人(因为第一个人已经被越过),并杀掉第k个人。接着,再越过k-1个人,并杀掉第k个人。这个过程沿着圆圈一直进行,直到最终只剩下一个人留下,这个人就可以继续活着。

将问题抽象一下:现在有 n n n 个人围成一圈按顺序编号为 1 ∼ n 1\sim n 1n。从 1 1 1 号开始按照 1 、 2 、 3 、、、 k 1、2、3、、、k 123、、、k 的顺序报数,报 k k k 者退出,然后从下一个人开始继续从 1 1 1 开始报数,知道只剩下一个人,求剩下这个人的编号。
例如:
如:N=6,k=5
1 2 3 4 5 ‾ \underline 5 5 6
1 2 3 4 ‾ \underline 4 4 6
1 2 3 6 ‾ \underline6 6
1 2 ‾ \underline2 2 3
1 3 ‾ \underline3 3
1
最终剩下编号 1 1 1

朴素解法

模拟
模拟整个选人的流程,每次去除一个人,直至剩下最后一个。
可以使用环形链表或者数组。
代码

#include <iostream>
#include <cstring>
#include <algorithm>

using namespace std;

const int N = 1010;

int flag[N] ;

int main()
{
    int n, k;
    cin >> n >> k;
    int cnt = n;
    int id = 0;
    while (cnt != 1) {
        int t = 0;
        do{
            id = id % n + 1;
            if (!flag[id]) {
                t ++;
            }
        }
        while (t < k);
        flag[id] = 1; 
        cnt --;
    }
    for (int i = 1; i <= n; i ++)
        if (!flag[i])
            cout << i;
    return 0;
}

时间复杂度 O ( n × k ) O(n\times k) O(n×k)

数学优化

n n n 个人围成一圈并以 k k k 为步长第一次报数时,第 k k k 个人出列,此时就又组成了一个新的人数为 n − 1 n-1 n1 的约瑟夫环。要求 n n n 个人的约瑟夫环问题的解,就依赖于求 n − 1 n-1 n1 个人的约瑟夫问题的解,要求 n − 1 n-1 n1 个人的约瑟夫问题的解,则依赖于求 n − 2 n-2 n2 个人的约瑟夫换问题的解,依次类推,直至求 1 1 1 个人的时候,该问题的解。

递推公式 f ( N , M ) = f ( ( N − 1 , M ) + M ) % N f(N,M)=f((N-1,M)+M)\%N f(N,M)=f((N1,M)+M)%N
其中, f ( N , M ) f(N,M) f(N,M) 表示 N N N 个人报数,将报到 M M M 的人杀掉,最终胜利者的编号。
推导过程:
举例:11个人参与游戏,每报到3的人被杀掉
第一轮:从No.1开始报数,No.3被杀
第二轮:No.4从1开始报数,这时可以认为队伍的头是No.4,No.6被杀
……
第九轮:No.2从1开始报数,成为队伍的头,No.8被杀
第十轮:No.2从1开始报数,……No.2被杀
胜利者为No.7
关键
假设①:当游戏中剩余11人时,我们知道最终胜利者为No.7(对应数组下标为 6 )。那么下一轮剩余10人时,最终胜利者No.7的下标变成 3。因为删掉No.3后,后面的人都往前移动了3位(每杀掉一个人,下一个人成为头,相当于把数组向前移动 k 位,6 - 3 = 3,所以最终胜利者下标变为 3);
假设②:当游戏中剩余10人时,我们知道最终胜利者的下标为 3。那么下一轮剩余11人时,最终胜利者的编号是几?该问题可以看作假设①的逆过程,因此: f ( 11 , 3 ) = f ( 10 , 3 ) + 3 = 6 f(11,3)=f(10,3)+3 = 6 f(11,3)=f(10,3)+3=6
为防止数组越界,对当前人数取模: f ( 11 , 3 ) = ( f ( 10 , 3 ) + 3 ) % 11 = 6 f(11,3)=(f(10,3)+3)\%11=6 f(11,3)=(f(10,3)+3)%11=6。数组下标为 6,对应的编号为 No.7。
假设③:游戏中剩余 N N N 人,报到 k k k 者被杀,数组移动情况为:每杀一个人,下一个人成为头,相当于把数组向前移动 k k k 位。若已知剩余 N − 1 N-1 N1人时最终胜利者下标为 f ( N − 1 , k ) f(N-1,k) f(N1,k),则 N N N 个人时,就是往后移动 k k k 位。因此推导出递推公式: f ( N , k ) = ( f ( N − 1 , k ) + k ) % N f(N,k)=(f(N-1,k)+k)\%N f(N,k)=(f(N1,k)+k)%N
核心:最终胜利者的下标位置的变化。每去除一个人,其实就是把这个数组向前移动了 k k k 位。然后逆过来,就可以得到这个递推式。因为求的是数组标,最终的编号还要加 1。
代码

// 递归
#include <cstdio>
#include <cstring>
#include <iostream>
#include <algorithm>

using namespace std;

const int N = 1e5 + 10;

int solve(int n, int k) {
    if (n == 1)
        return n;
    return (solve(n - 1, k) + k - 1) % n + 1;
}
int main() {
    int n, k;
    cin >> n >> k;
    cout << solve(n, k);
    return 0;
}

复杂度

  • 时间复杂度: O ( n ) O(n) O(n)
  • 空间复杂度: O ( n ) O(n) O(n),递归栈的空间。
// 迭代
#include <cstdio>
#include <cstring>
#include <iostream>
#include <algorithm>

using namespace std;

const int N = 1e5 + 10;

int solve(int n, int k) {
    if (k == 1)
        return n;
    int p = 0;
    for (int i = 2; i <= n; i ++)
        p = (p + k) % i;
    return p + 1;
}
int main() {
    int n, k;
    cin >> n >> k;
    cout << solve(n, k);
    return 0;
}

复杂度

  • 时间复杂度: O ( n ) O(n) O(n)
  • 空间复杂度: O ( 1 ) O(1) O(1)
  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值