约瑟夫环

问题原型:n个人围坐一圈依次报数(1~n),第m个人离席;之后从第(m+1)个人开始继续报数,报至第m个人时同样离席,求最后剩下的人的最初编号。

1.递归法

考虑将问题拆分,对于刚去掉m的环:

1,2,,m-1,m+1,,,n,

可以视作环(通过平移得到,前面原本有m个元素):

m+1,,,n,1,2,,m-1

即从m+1开始依次从1重新编号,如果我们能找到这个长度为n-1的环的解,将其(x+m-1)%n+1即为原环的解,(这个计算式是因为最小编号为1,,故普通取余不能满足要求——结果为0~n-1,而我们要保证调整后编号在1~n之间)

附代码:

int ysf(int n,int m,int k){        //求出第k个出圈人的编号
    if(k==1)
        return (n+m-1)%n+1;
    else
        return (ysf(n-1,m,k-1)+m-1)%n+1;    
}

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Absoler

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值