浅谈矩阵快速幂

矩阵快速幂,从字面上来说就是矩阵之间的乘法运算关系,它分为四部分:
  一、矩阵乘法函数
  二、矩阵快速幂函数
  三、最初矩阵的求解
  四、结果的求解
第一和第二步有一些板子:

struct In{
    ll m[maxn][maxn];	//定义结构体矩阵
};
In _mul(In x,In y,int n)	//n × n的矩阵
{
    In p;	//存放 x矩阵 X y矩阵 的结果矩阵
    for(int i=0;i<n;i++)
        for(int j=0;j<n;j++)
            p.m[i][j] = 0;
    for(int i=0;i<n;i++)
        for(int j=0;j<n;j++)
            for(int k=0;k<n;k++)
                p.m[i][j] = (p.m[i][j]+x.m[i][k]*y.m[k][j])	%	mod;	//关于是%mod
                				//还是%(mod-1)看你所求是否为质数,不是就%mod
    return p;
}
In _pow(In x,ll N,int n){
    In ans;	//单位矩阵
    for(int i=0;i<n;i++)
        for(int j=0;j<n;j++)
            if(i==j) ans.m[i][j]=1;
            else ans.m[i][j]=0;
    while(N){
        if(N&1){
            ans = _mul(ans,x);
        }
        x = _mul(x,x);
        N >>= 1;
    }
    return ans;
}

第三步,最初矩阵的求解
  在本文中就是 x.m矩阵的初始化问题:看了许多大佬的博客,他们都是直接写出这个初始化,我比较菜,就写一下求解初始化的矩阵的步骤:
又见斐波那契数列为例:
在这里插入图片描述
就这个题目而言,首先求解 F(i) 会用到六个变量:F(i-1)、F(i-2)、i3、i2、i、1;所以他至少是一个6 x 6的矩阵,至于n等不等于6,就得看后期的求解;
我们会发现
  F(i+1) = F(i) + F(i-1) + (i+1)3 + (i+1)2 + (i+1) + 1;
  F(i) = 1 * F(i-1) + 1 * F(i-2) + 1 * i3 + 1 * i2 + 1 * i + 1 * 1;
  F(i-1) = 1 * F(i-1) + 0 * F(i-2) + 0 * i3 + 0 * i2 + 0 * i + 0 * 1;
  (i+1)3 = 0 * F(i-1) + 0 * F(i-2) + 1 * i3 + 3 * i2 + 3 * i + 1 * 1;
  (i+1)2 = 0 * F(i-1) + 0 * F(i-2) + 0 * i3 + 1 * i2 + 2 * i + 1 * 1;
  (i+1) = 0 * F(i-1) + 0 * F(i-2) + 0 * i3 + 0 * i2 + 2 * i + 1 * 1;
  1 = 0 * F(i-1) + 0 * F(i-2) + 0 * i3 + 0 * i2 + 0 * i + 1 * 1;

所以很明显他是一个6×6的矩阵:
x.m的初始化:
1,1,1,1,1,1
1,0,0,0,0,0
0,0,1,3,3,1
0,0,0,1,2,1
0,0,0,0,1,1
0,0,0,0,0,1

四、结果的求解
  还是以这个题为例子,F(i) 的值是有F(i-1)矩阵推导出来的,就拿F(2)来说,F(1)矩阵(记作F1[6][6]):
1,1,1,1,1,1
1,0,0,0,0,0
0,0,1,3,3,1
0,0,0,1,2,1
0,0,0,0,1,1
0,0,0,0,0,1
F(2) = 1 * F1[0][0] + 0 * F1[0][1] + 8 * F1[ 0][2]+ 4 * F1[0][3] + 2 * F1[0][4] + 1 * F1[0][5];
可以继续求,最终:
F(n) = 1 * Fn-1[0][0] + 0 * Fn-1[0][1] + 8 * Fn-1[ 0][2]+ 4 * Fn-1[0][3] + 2 * Fn-1[0][4] + 1 * Fn-1[0][5]

AC代码:

#include<iostream>
#include<cmath>
#include<algorithm>
#include<cstdio>
#define ll long long
#define mod 1000000007
using namespace std;

struct In{
    ll m[6][6];
};

In _mul(In x,In y)
{
    In p;
    for(int i=0;i<6;i++)
        for(int j=0;j<6;j++)
            p.m[i][j] = 0;
    for(int i=0;i<6;i++)
        for(int j=0;j<6;j++)
            for(int k=0;k<6;k++)
                p.m[i][j] = (p.m[i][j]+x.m[i][k]*y.m[k][j])%mod;
    return p;
}
In _pow(In x,ll n){
    In ans;
    for(int i=0;i<6;i++)
        for(int j=0;j<6;j++)
            if(i==j) ans.m[i][j]=1;
            else ans.m[i][j]=0;
    while(n){
        if(n&1){
            ans = _mul(ans,x);
        }
        x = _mul(x,x);
        n >>= 1;
    }
    return ans;
}
int main(void)
{
    ll nmb[6][6] =
    {
        {1,1,1,1,1,1},
        {1,0,0,0,0,0},
        {0,0,1,3,3,1},
        {0,0,0,1,2,1},
        {0,0,0,0,1,1},
        {0,0,0,0,0,1}
    };
    ll n,t;
    In res;
    scanf("%lld",&t);
    while(t--){
        for(int i=0;i<6;i++)
            for(int j=0;j<6;j++)
                res.m[i][j] = nmb[i][j];
        scanf("%lld",&n);
        res = _pow(res,n-1);
        if(n!=1&&n!=0){
            ll op = (res.m[0][0]+res.m[0][2]*8+res.m[0][3]*4+res.m[0][4]*2+res.m[0][5])%mod;
            printf("%lld\n",op);
        }
        else printf("%lld\n",n);
    }
    return 0;
}

  • 1
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

逃夭丶

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值