算法设计与分析基础(潘彦译)课后习题答案

### 关于《算法设计分析》(潘彦译)期末复习资料 #### 动态规划的核心概念及其应用 动态规划是一种通过把原问题分解为相对简单的子问题的方式来求解复杂问题的方法。其核心在于识别并利用子问题的重叠性质以及最优子结构性质来减少重复计算,从而提高效率[^1]。 对于动态规划的理解可以从以下几个方面展开: - **最优子结构**:一个问题可以被划分为若干个更小规模的相同类型的子问题,并且这些子问题是相互独立的。 - **子问题重叠**:不同阶段可能会遇到相同的子问题,在这种情况下只需要解决一次即可保存结果供后续调用。 - **构建递推关系式**:基于上述特性建立状态转移方程,即如何从前一步骤的状态转移到下一步骤的状态。 #### 解决具体问题的例子——最长路径问题 考虑有向无环图(DAG)中的最长路径问题,可以通过拓扑排序加动态规划的方式高效求解。该方法首先对节点按照拓扑顺序排列,接着遍历每一个顶点v, 更新到达此顶点的最大权重值d[v], 并记录前驱结点predecessor(v)[^2]。 ```python def dag_longest_path(graph, source): order = topological_sort(graph) distance = {node: float('-inf') for node in graph} predecessor = {} # Initialize the starting point. distance[source] = 0 for u in order: if u not in graph or all(node not in distance for node in graph[u]): continue for v in graph[u]: new_distance = distance[u] + weight(u, v) if new_distance > distance[v]: distance[v] = new_distance predecessor[v] = u return max(distance.values()), reconstruct_path(predecessor, target_node) ``` #### 实际案例研究——布线优化问题 当面对实际工程挑战比如电路板上的元件布局时,也可以采用类似的思路来进行最优化处理。例如,在给定连接矩阵`conn`的情况下寻找使总布线长度最小化的解决方案。这通常涉及到定义合适的评价函数评估当前配置的好坏程度,并借助分支界限法探索可能的空间直到找到全局最优解为止[^3]。
评论 12
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值