数论初步 1

23 篇文章 0 订阅
22 篇文章 0 订阅

欧几里得算法(辗转相除法)

最大公约数

非递归

int  gcd(int a,int b)
{
   int c;
   while(b!=0)
   {
    c=a,a=b,b=c%a;
   }
   return a;
}

递归:

int gcd(int a,int b)
{
   return (b===0)?a:gcd(b,a%b);
}

gcd(a,b)是计算自然数a和b的最大公约数的函数,
a=bxp+q,所以gcd(b,q)既整除a又整除b,也就整除gcd(a,b)。
反之,由于q=a-bxp,同理可证gcd(a,b)既整除b又整除q,也就整除gcd(b,q)
综上所述可知gcd(a,b)=gcd(b,q)=gcd(b,a%b)
不断这样操作下去,由于gcd的第二个参数总是不断减少的,最后会得到gcd(a,b)=gcd(c,0),而0和c的最大公约数是c,所以gcd(c,0)=c
当然了,我们需要保证gcd()函数的参数中,a>b

最大公约数
lcm(int a,int b)
{
	return a/gcd(a,b)*b;
}

也可以认为:::
a∗b=gcd(a,b)∗lcm(a,b)

欧几里得扩展

直线上的点:求直线ax+by+c=0上有多少个整点(x,y)满足x∈[x1,x2],y∈[y1,y2]

找出一对整数(x,y)使得ax+by=gcd(a,b)

void gcd(int a,int b,int &d,int &x,int &y){
    if(!b) {
        d=a;x=1;y=0;
    }
    else{
        gcd(b,a%b,d,y,x);
        y-=x*(a/b);
    }
}

由扩展欧几里得算法可知:
1)设a,b,c为任意整数。若方程ax+by=c的一组整数解为(x0,y0),则它的任意整数解都可以写成(x0+kb’,y0-ka’),其中a’=a/gcd(a,b),b’=b/gcd(a,b),k取任意整数。
2)设a,b,c为任意整数,g=gcd(a,b),方程ax+by=g的一组解是(a0,b0),则当c是g的倍数时ax+by=c的一组解是(x0c/g,y0c/g);当c不是g的整数时无整数解。

# 素数计算 **普通查找素数方法**
void prim()
{
   for(int i=1;i<n*n;i++)
   {
     for(int j=2;j<=(sqrt)i;j++)
     {
      if(i%j==0)
      {flag=0;
        break;}
     }
     if(flag)
       cout<<i<<endl;
     flag=1;
   }
}

素数筛选法
每次把素数的倍数删除,留下的就是素数。

void eratosthenes (int b) {
	for (int i = 2; i <= b; i++) {
		if (notPrimes[i]) continue;
		// 判断这个数是不是素数,不是就跳过
		// 是的话就将这个素数的倍数,改为不是素数。
		for (int j = 2; j * i <= b; j++) {
			notPrimes[j*i] = true;
		}
	}
}

大数取模

( a + b ) % n = ( ( a % n ) + ( b % n ) ) % n         ①
( a - b ) % n = ( ( a % n ) - ( b % n) + n ) % n      ②
( a * b ) % n = ( ( a % n ) * ( b % n ) ) % n         ③

大整数取模:(使用①)
题目:输入正整数n和m,输出n mod m的值。n ≤ 10e100,m≤10e9。

long long bigIntegerMod (char *bigInteger, int divisor) {
	long long ans = 0;
	for (int i = 0; i < strlen(bigInteger); i++) {
		ans = (ans * 10 + bigInteger[i] - '0') % divisor;
	}
	return ans;
}

幂取模(使用③):
题目:输入正整数a、 n和m,输出a^n mod m的值。a, n, m≤10e9

int powerMod (int a, int n, int m) {
	if (n == 0) return 1;
	int x = powerMod(a, n/2, m);
	long long ans = (long long)x * x %m;
	if (n%2 == 1) {
		ans = ans*a%m;
	} 
	return (int) ans;
}

快速幂

原理:

例如:求a^n,快速幂将次方数按照2进制来计算。例如n=suoyi在这里插入图片描述
得到的结果为::
在这里插入图片描述
可以看出其中的规律,只要2进制第i位上的数字是1,就乘(i是二进制上的位数表示,从右向左)

long long _pow(long long a,long long b)
{
	long long ans=1;
	while(b)  //判断是否为零,为零这任何数的0次方都为1
	{
		if(b&1)  // b&1 将b转化为2进制与1进行&运算
		{
			ans*=(ans*a)%mod;
		}
		a=(a*a)%mod;
		b>>1;   //次方数的2进制向左移动一位。
	}
	return ans;
}
加油 ……
  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值