整体二分(poj 2104)

12 篇文章 0 订阅
11 篇文章 0 订阅

所谓整体二分,需要数据结构题满足以下性质:

  1. 询问的答案具有可二分性
  2. 修改对判定答案的贡献相对独立,修改之间互不影响效果
  3. 修改如果对判定答案有贡献,则贡献为一确定的与判定标准无关的值
  4. 贡献满足交换律,结合律,具有可加性
  5. 题目允许离线操作

不妨先来考虑下一个简单易懂的?(?????)的排序算法(?为数值范围)
这个方法是自己在思考整体二分的时候??的 虽然在实际应用上没什么意义 但是有助于理解整体二分的分治过程
我们假设当前处理的区间里最小值不小于? 最大值不大于? 令???=(?+?)/2
然后把当前区间扫描一遍 如果一个数不大于???就放到左子区间 否则放到右子区间
如此下去 直到区间内只剩一个数或者? 与 ?相等 排序就完成了

现在回到静态区间第?小问题 和刚才那个排序算法类似 我们先二分一个答案???,如果区间内小于等于???的数的个数(记为???)不超过? 那么最终答案显然也是不超过???的,这类询问我们把它们划分到左子区间。而对于???大于?的 我们则把它们划分到右子区间 并且把?减去???,换句话说就是把小于等于???的数的贡献全部算上后之后就不用考虑了。
可以发现这样划分的层数是???? 而每一层的询问个数是?个 再加上算贡献时用到的??? 所以复杂度是?(?????????)

以下是poj 2104的参考代码:

#include <algorithm>
#include <cmath>
#include <cstdio>
#include <cstdlib>
#include <cstring>
#include <iostream>
#include <map>
#include <queue>
#include <set>
#include <stack>
#include <string>
#include <vector>

using namespace std;
#define mem(a, b) memset(a, b, sizeof(a))
#define PI acos(-1)
#define debug(a) cout << (a) << endl
typedef long long ll;
int dir8[8][2] = { { 1, 0 }, { 0, 1 }, { -1, 0 }, { 0, -1 }, { 1, 1 }, { 1, -1 }, { -1, 1 }, { -1, -1 } };
int dir4[4][2] = { 1, 0, 0, 1, -1, 0, 0, -1 };
const int INF = 0x3f3f3f3fLL;
const long long LLF = 0x3f3f3f3f3f3f3f3fLL;
const int MAXn = 2e5 + 15;
const int mod = 1e9 + 7;
//priority_queue<pair<int, int>, vector<pair<int, int>>, greater<pair<int, int>>> q;
int n, m, c[MAXn], ans[MAXn],cnt; //c 树状数组, ans:答案
struct node {
    int ty, pos, x, y, k; //ty区别输入和询问, pos :下标,x:左,y:右, k:第k小
} q[MAXn], q1[MAXn], q2[MAXn]; //q存储 ,q1:左区间,q2:右区间

int lowbit(int x)  // 求x最低位的1
{
    return x & -x;
}
void add(int x, int val) //更新树状数组
{
    while (x <= n) {
        c[x] += val;
        x += lowbit(x);
    }
}
int sum(int x) //求 1-x 的树状数组的值的和
{
    int sum = 0;
    while (x>0) {
        sum += c[x];
        x -= lowbit(x);
    }
    return sum;
}
void solve(int l, int r, int L, int R) 
{
    if (l > r || L > R) 
        return;
    if (L == R) { //如果相等 更新答案
        for (int i = l; i <= r; i++) {
            if (q[i].ty) {
                ans[q[i].pos] = L;
            }
        }
        return;
    }
    int mid = (L + R) >> 1, cnt1 = 0, cnt2 = 0; 
    for (int i = l; i <= r; i++) {
        if (q[i].ty) {//如果是询问
            int temp = sum(q[i].y) - sum(q[i].x - 1); //temp :q[i].x 到q[i].y 小于等于mid 的个数 
            if (temp >= q[i].k) //如果小于等于mid的数大于k
                q1[++cnt1] = q[i];//放到左区间
            else { //反之 k减去temp 并放到右区间
                q[i].k -= temp;
                q2[++cnt2] = q[i];
            }
        } else { //如果是输入
            if(q[i].x<=mid){ //如果小于mid
                add(q[i].pos,q[i].y);// 更新树状数组
                q1[++cnt1]=q[i];// 放到左区间
            }
            else q2[++cnt2]=q[i];//反之,放到右区间
        }
    }
    for(int i=1;i<=cnt1;i++){
        if(!q1[i].ty){ //更新树状数组
             add(q1[i].pos,-q1[i].y);
        }
    }//更新 q 数组
    for(int i=1;i<=cnt1;i++){
        q[l+i-1]=q1[i]; 
    }
    for(int i=1;i<=cnt2;i++){
        q[l+i+cnt1-1]=q2[i]; 
    }
    solve(l,l+cnt1-1,L,mid);//左区间
    solve(l+cnt1,r,mid+1,R);//右区间
    return ;
}
int main(){
//输入
    cin>>n>>m;
    int l,r,k;
    for(int i=1;i<=n;i++){
        cin>>k;
        q[++cnt]=node{0,i,k,1,0}; // ty==0 表示是输入
    }
    for(int i=1;i<=m;i++){
        cin>>l>>r>>k;
        q[++cnt]=node{1,i,l,r,k}; //ty==1 表示是询问 
    }
    solve(1,cnt,-INF,INF);
    for(int i=1;i<=m;i++)//输出
        cout<<ans[i]<<endl;
    return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值