题目描述
给你 n 个非负整数 a1a1,a2a2,…,anan,每个数代表坐标中的一个点(ii, aiai) 。在坐标内画 n 条垂直线,垂直线 i 的两个端点分别为 (ii, aiai) 和 (ii, 00)。找出其中的两条线,使得它们与 x 轴共同构成的容器可以容纳最多的水。
说明:你不能倾斜容器,且 n 的值至少为 2。
图中垂直线代表输入数组 [1,8,6,2,5,4,8,3,7]。在此情况下,容器能够容纳水(表示为蓝色部分)的最大值为 49。
示例:
输入:[1,8,6,2,5,4,8,3,7]
输出:49
双指针法
在暴力解法中,每固定一条直线,就要遍历剩下的所有直线,
造成了大量元素的多次重复访问。那么我们有没有办法只扫描一次数组,
就可以找到最大的面积呢?让我们来看看双指针算法是怎么做的。
最开始的时候,如果我们用指针i和j指向最两端的直线,
此时两条直线之间的距离就是最大的,即我们所求矩形面积的宽度(width)
为最大。
但是位于最两端的直线不一定是最高的,所以它们组成矩形的面积也就
不一定是最大的。因此我们依然需要继续遍历整个数组,这时我们将指
向数组两端的指针慢慢往里面收敛,直到找到面积最大值。
对于此时i和j指向的直线,他们之间的宽度已经是最宽了。于是在收
敛的过程中,如果遇到的高度比两端的柱子更低的话,由于之间的
宽度更短,所以面积必定更小,我们就可以直接跳过,不予考虑。
我们只需要考虑收敛时出现的那些高度更高的柱子。
该方法在双指针向中间收敛的过程中,对数组中的每个元素只访问了一次,
因此时间复杂度为O(n).
class Solution {
public:
int maxArea(vector<int>& height) {
int i = 0, j = height.size() - 1;
int res = 0;
while (i < j)
{
int h = min(height[i], height[j]);
res = max(res, h * (j - i));
while (i < j && height[i] <= h) i ++;
while (i < j && height[j] <= h) j --;
}
return res;
}
};