LeetCode 11. 盛最多水的容器(贪心)

本文介绍了如何使用双指针法解决寻找两个垂直线段构成的最大面积容器问题。在给定非负整数数组表示线段高度的情况下,通过从两端开始收敛指针,动态更新最大面积,避免了重复访问元素,实现了O(n)的时间复杂度。示例展示了在给定数组[1,8,6,2,5,4,8,3,7]中,最大面积为49。
摘要由CSDN通过智能技术生成

题目描述
给你 n 个非负整数 a1a1,a2a2,…,anan,每个数代表坐标中的一个点(ii, aiai) 。在坐标内画 n 条垂直线,垂直线 i 的两个端点分别为 (ii, aiai) 和 (ii, 00)。找出其中的两条线,使得它们与 x 轴共同构成的容器可以容纳最多的水。

说明:你不能倾斜容器,且 n 的值至少为 2。

在这里插入图片描述

图中垂直线代表输入数组 [1,8,6,2,5,4,8,3,7]。在此情况下,容器能够容纳水(表示为蓝色部分)的最大值为 49。

示例:

输入:[1,8,6,2,5,4,8,3,7]
输出:49

双指针法
在暴力解法中,每固定一条直线,就要遍历剩下的所有直线,
造成了大量元素的多次重复访问。那么我们有没有办法只扫描一次数组,
就可以找到最大的面积呢?让我们来看看双指针算法是怎么做的。
最开始的时候,如果我们用指针i和j指向最两端的直线,
此时两条直线之间的距离就是最大的,即我们所求矩形面积的宽度(width)
为最大。
但是位于最两端的直线不一定是最高的,所以它们组成矩形的面积也就
不一定是最大的。因此我们依然需要继续遍历整个数组,这时我们将指
向数组两端的指针慢慢往里面收敛,直到找到面积最大值。
对于此时i和j指向的直线,他们之间的宽度已经是最宽了。于是在收
敛的过程中,如果遇到的高度比两端的柱子更低的话,由于之间的
宽度更短,所以面积必定更小,我们就可以直接跳过,不予考虑。
我们只需要考虑收敛时出现的那些高度更高的柱子。
该方法在双指针向中间收敛的过程中,对数组中的每个元素只访问了一次,
因此时间复杂度为O(n).
class Solution {
public:
    int maxArea(vector<int>& height) {
        int i = 0, j = height.size() - 1;
        int res = 0;
        while (i < j)
        {
            int h = min(height[i], height[j]);
            res = max(res, h * (j - i));
            while (i < j && height[i] <= h) i ++;
            while (i < j && height[j] <= h) j --;
        }
        return res;
    }
};
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

小王子y

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值