小渊和小轩是好朋友也是同班同学,他们在一起总有谈不完的话题。
一次素质拓展活动中,班上同学安排坐成一个 m 行 n 列的矩阵,而小渊和小轩被安排在矩阵对角线的两端,因此,他们就无法直接交谈了。
幸运的是,他们可以通过传纸条来进行交流。
纸条要经由许多同学传到对方手里,小渊坐在矩阵的左上角,坐标(1,1),小轩坐在矩阵的右下角,坐标(m,n)。
从小渊传到小轩的纸条只可以向下或者向右传递,从小轩传给小渊的纸条只可以向上或者向左传递。
在活动进行中,小渊希望给小轩传递一张纸条,同时希望小轩给他回复。
班里每个同学都可以帮他们传递,但只会帮他们一次,也就是说如果此人在小渊递给小轩纸条的时候帮忙,那么在小轩递给小渊的时候就不会再帮忙,反之亦然。
还有一件事情需要注意,全班每个同学愿意帮忙的好感度有高有低(注意:小渊和小轩的好心程度没有定义,输入时用0表示),可以用一个0-100的自然数来表示,数越大表示越好心。
小渊和小轩希望尽可能找好心程度高的同学来帮忙传纸条,即找到来回两条传递路径,使得这两条路径上同学的好心程度之和最大。
现在,请你帮助小渊和小轩找到这样的两条路径。
输入格式
第一行有2个用空格隔开的整数 m 和 n,表示学生矩阵有 m 行 n 列。
接下来的 m 行是一个 m∗n 的矩阵,矩阵中第 i 行 j 列的整数表示坐在第 i 行 j 列的学生的好心程度,每行的 n 个整数之间用空格隔开。
输出格式
输出一个整数,表示来回两条路上参与传递纸条的学生的好心程度之和的最大值。
数据范围
1≤n,m≤50
输入样例:
3 3
0 3 9
2 8 5
5 7 0
输出样例:
34
(线性DP) O(n3)
首先考虑路径有交集该如何处理。
可以发现交集中的格子一定在每条路径的相同步数处。因此可以让两个人
同时从起点出发,每次同时走一步,这样路径中相交的格子一定在同一步内。
状态表示:f[k, i, j] 表示两个人同时走了k步,第一个人在 (i, k - i) 处,
第二个人在 (j, k - j)处的所有走法的最大分值。
状态计算:按照最后一步两个人的走法分成四种情况:
两个人同时向右走,最大分值是 f[k - 1, i, j] + score(k, i, j);
第一个人向右走,第二个人向下走,最大分值是 f[k - 1, i, j - 1]
+ score(k, i, j);
第一个人向下走,第二个人向右走,最大分值是 f[k - 1, i - 1, j]
+ score(k, i, j);
两个人同时向下走,最大分值是 f[k - 1, i - 1, j - 1]
+ score(k, i, j);
注意两个人不能走到相同格子,即i和j不能相等。
#include <cstdio>
#include <cstring>
#include <iostream>
#include <algorithm>
using namespace std;
const int N = 55;
int n, m;
int g[N][N];
int f[N * 2][N][N];
int main()
{
scanf("%d%d", &n, &m);
for (int i = 1; i <= n; i ++ )
for (int j = 1; j <= m; j ++ )
scanf("%d", &g[i][j]);
for (int k = 2; k <= n + m; k ++ )
for (int i = max(1, k - m); i <= n && i < k; i ++ )
for (int j = max(1, k - m); j <= n && j < k; j ++ )
for (int a = 0; a <= 1; a ++ )
for (int b = 0; b <= 1; b ++ )
{
int t = g[i][k - i];
//重合不能帮助
if (i != j || k == 2 || k == n + m)
{
t += g[j][k - j];
f[k][i][j] = max(f[k][i][j], f[k - 1][i - a][j - b] + t);
}
}
printf("%d\n", f[n + m][n][n]);
return 0;
}