在火影忍者的世界里,令敌人捉摸不透是非常关键的。
我们的主角漩涡鸣人所拥有的一个招数——多重影分身之术——就是一个很好的例子。
影分身是由鸣人身体的查克拉能量制造的,使用的查克拉越多,制造出的影分身越强。
针对不同的作战情况,鸣人可以选择制造出各种强度的影分身,有的用来佯攻,有的用来发起致命一击。
那么问题来了,假设鸣人的查克拉能量为 M,他影分身的个数最多为 N,那么制造影分身时有多少种不同的分配方法?
注意:
影分身可以分配0点能量。
分配方案不考虑顺序,例如:M=7,N=3M=7,N=3,那么 (2,2,3) 和 (2,3,2) 被视为同一种方案。
输入格式
第一行是测试数据的数目 t。
以下每行均包含二个整数 M 和 N,以空格分开。
输出格式
对输入的每组数据 M 和 N,用一行输出分配的方法数。
数据范围
0≤t≤20,
1≤M,N≤10
输入样例:
1
7 3
输出样例:
8
#include <cstdio>
#include <algorithm>
using namespace std;
const int N = 11;
int main()
{
int T;
scanf("%d", &T);
while (T -- )
{
int n, m;
scanf("%d%d", &m, &n);
int f[N][N] = {0};
f[0][0] = 1;//总和是0分成0个数
for (int i = 0; i <= m; i ++ )
for (int j = 1; j <= n; j ++ )
{
f[i][j] = f[i][j-1];
if(i>=j)f[i][j] += f[i-j][j];
}
printf("%d\n", f[m][n]);
}
return 0;
}